Мы не можем этого сделать, увы. Человеческое воображение не приспособлено для визуализации столь колоссальных математических пространств, работа с которыми в квантовой механике – в порядке вещей. Но мы можем что-то сообразить для одной-двух частиц. Ко всему прочему, нам придется описывать эти феномены словами и уравнениями. К счастью, уравнение Шрёдингера прямо и определенно характеризует поведение волновой функции. Стоит нам понять, что происходит с двумя частицами, и обобщение этой картины до 1088 частиц сведется к обычной математике.
Поскольку волновые функции так велики, может показаться, что работать с ними немного неудобно. К счастью, практически все интересное, что можно сказать о квантовой запутанности, сводимо к гораздо более простому контексту, описываемому всего несколькими кубитами.
Позаимствовав причудливую традицию из книг по криптографии, физики любят рассматривать двух людей по имени Алиса и Боб, которые делятся кубитами. Итак, допустим, у нас есть два электрона,
Само наличие двух кубитов еще не означает, что они обязательно будут запутаны друг с другом. Рассмотрим одно из базисных состояний, например то, где у обоих кубитов верхние спины. Если Алиса измеряет свой кубит по оси ординат, то она с вероятностью пятьдесят на пятьдесят может получить правый или левый спин, и то же касается Боба. Однако в любом случае мы ничего не узнаем о том, что увидит Боб, если узнаем, что увидела Алиса. Вот почему зачастую мы говорим о «волновой функции частицы», хотя хорошо знаем – когда части системы не запутаны друг с другом, это равносильно тому, как если бы у каждой из них была собственная волновая функция.
Вместо этого давайте рассмотрим равную суперпозицию двух базисных состояний, в одном из которых оба спина верхние, а в другом – нижние:
Если Алиса измерит вертикальный спин своего электрона, то получит верхний или нижний спин с вероятностью, равной 50 %, и то же самое касается Боба. Разница теперь в том, что если мы узнаем результат Алисы прежде, чем Боб выполнит свое измерение, то результат Боба нам будет известен со 100 %-ной вероятностью: он увидит то же самое, что и Алиса. На языке академической квантовой механики можно сказать, что измерение, выполненное Алисой, заставляет волновую функцию сколлапсировать в одно из двух базисных состояний, из-за чего результат Боба оказывается детерминирован. (В многомировой интерпретации после Алисиного акта измерения волновая функция разветвляется, и получается два разных Боба, каждый из которых получит определенный результат измерения.) Это квантовая запутанность в действии.
По итогам Сольвеевского конгресса 1927 года Эйнштейн остался убежден, что квантовая механика, особенно в интерпретации копенгагенской школы, очень хороша в прогнозировании результатов экспериментов, но совершенно не тянет на полноценную теорию физического мира. В 1935 году он изложил свои соображения в статье, написанной вместе с коллегами Борисом Подольским и Натаном Розеном, в результате чего статья получила известность под названием ЭПР (EPR). Позже Эйнштейн сказал, что основные идеи принадлежали ему, Розен занимался вычислениями, а Подольский выполнил большую часть работы над текстом.
В ЭПР рассматривались координаты и импульсы двух частиц, движущихся в противоположных направлениях, но нам будет удобнее говорить о кубитах. Допустим, есть два спина в запутанном состоянии, описанном выше. (Такое состояние очень легко создать в лаборатории.) Алиса со своим кубитом остается дома, а Боб берет свой и отправляется с ним в долгое путешествие – допустим, прыгает в ракету и летит к Альфе Центавра, расположенной в четырех световых годах от нас. Запутанность между двумя частицами не ослабевает по мере того, как они удаляются друг от друга; пока ни Алиса, ни Боб не измеряют спины своих кубитов, общее квантовое состояние останется неизменным.
Как только Боб благополучно прибывает к Альфе Центавра, Алиса наконец измеряет спин своей частицы вдоль заранее оговоренной вертикальной оси. До этого измерения мы понятия не имели, каков будет результат измерения ее спина, – равно как и для спина Боба. Предположим, что Алиса наблюдает верхний спин. В таком случае, по правилам квантовой механики, мы сразу же узнаем, что и Боб зафиксирует верхний спин, как только соберется выполнить измерение.