истинный закон. В этой связи действительно важным является то, что данная функция или скорее
данный класс функций предлагается нам математикой
стоты. Следует отметить, что параметры, от которых этот класс функций должен зависеть, не должны
быть столь же многочисленны, как и наблюдения, которым эти функции должны удовлетворять»7.
Замечание Вейля о том, что «данный класс функций предлагается нам математикой
силу их математической простоты» и его упоминание числа параметров согласуются с моей точкой
зрения (как она будет изложена в разделе 43). Однако Вейль не разъясняет, что же представляет со-
бой «математическая простота», а главное, он ничего не говорит о тех
более сложным8.
7
перевод: Philosophy of Mathematics and Natural Science. Princeton, University Press, 1949, p. 156). *Когда я писал эту свою
книгу, я не знал (и Вейль, без сомнения, не знал, когда писал свою), что Джеффрис и Ринч за шесть лет до Вейля предложи-
ли измерять простоту некоторой функции при помощи малочисленности ее свободно заменимых параметров (см. их сов-
местную статью:
ставившейся возможностью, чтобы подтвердить заслуги этих авторов.
8 Последующие замечания Вейля о связи между простотой и подкреплением также имеют отношение к рассматриваемой
нами проблеме. Эти замечания в основном согласуются с моими взглядами, изложенными в разделе 82, хотя и сам мой под-
ход, и мои аргументы в его пользу значительно отличаются от подхода Вейля (см. примечание 1 к разделу 82 и
*добавленное в последующих изданиях этой книги примечание *1 к разделу 43).
129
Приведенные цитаты из работ разных авторов очень важны для нас, поскольку они имеют непо-
средственное отношение к нашей цели, то есть к анализу эпистемологического понятия простоты.
Дело в том, что это понятие до сих пор не определено с достаточной точностью. Следовательно, все-
гда имеется возможность отвергнуть любую (к примеру, мою) попытку придать этому понятию точ-
ность на том основании, что интересующее эпистемологическое понятие простоты в действительно-
сти совершенно отлично от того понятия, которое предлагается. На такие возражения я мог бы отве-
тить, что я не придаю какого-либо значения самому
мною, и я хорошо сознаю его недостатки. Я только утверждаю, что понятие простоты, которое я
стремлюсь уточнить, помогает ответить на те самые вопросы, которые, как показывают приведенные
цитаты, часто ставились философами науки в связи с «проблемой простоты».
43. Простота и степень фальсифицируемости
Все возникающие в связи с понятием простоты эпистемологические вопросы могут быть разреше-
ны, если мы отождествим это понятие с понятием
утверждение вызовет резкие возражения*1; поэтому я сначала попытаюсь сделать его интуитивно бо-
лее приемлемым.
*'Яс удовлетворением обнаружил, что предложенная мною теория простоты (включая и идеи, изложенные в разделе 40) 31
была признана, по крайней мере, одним эпистемологом — Уильямом Нилом, который в своей книге пишет: «...Легко заме-
тить, что простейшая в этом смысле гипотеза является также гипотезой, которую, в случае ее ложности, мы можем надеять-
ся быстрее всего устранить... Короче говоря, именно стратегия принятия простейшей гипотезы, согласующейся с известны-
ми фактами, дает нам возможность как можно быстрее избавляться от ложных гипотез»
мянутой книги Вейля, а также на мою настоящую книгу. Однако ни на указанной странице книги Вейля, которую я цитиро-
вал в предыдущем разделе, ни в каком-либо другом месте этой замечательной книги (а также ни в какой другой его книге) я
не сумел обнаружить никакого следа воззрения, согласно которому простота теории связана с ее фальсифицируемостью, то
есть с легкостью ее устранения. И конечно, я не написал бы (как это сделано в конце предыдущего раздела), что Вейль «ни-
чего не говорит о тех
простой закон», если бы Вейль (или другой известный мне автор) предвосхитил мою теорию.
Таковы факты. Вейль в своем очень интересном рассуждении по поводу данной проблемы (процитированном мною в