Как мы уже упоминали, метрика в общей теории относительности определяется десятью функциями; одна из них является, в сущности, функцией хода, из которой можно определить скорость течения времени. Еще одна функция из десяти показывает, как «раскрывается» пространство в присутствии массивных тел. Остальные восемь функций описывают различные искажения пространства-времени – как в «комнате смеха», где ваше отражение растягивается то в одном, то в другом направлении. Все эти десять функций можно объединить в так называемый метрический тензор, обозначаемый обычно
Геодезические в теории относительности тоже несколько более сложные, чем на кривых поверхностях, отчасти потому, что они бывают трех разновидностей. Пространственноподобная геодезическая – это кратчайший путь между двумя пространственно разделенными точками, как прямое шоссе из Вашингтона в Сан-Франциско. Но, в отличие от шоссе, пространственноподобная геодезическая – это путь, которым не сможет пройти ни один наблюдатель: чтобы сделать это, он должен двигаться быстрее света. На первый взгляд это выглядит абсурдно: возможно ли, чтобы нельзя было пройти кратчайшим путем из одной точки в другую? Дело в том, что геодезическая в пространстве-времени определяет не только куда вы должны отправиться, но и когда вы должны туда добраться. Хороший пример пространст-венноподобной геодезической – это отрезок прямой при постоянном времени между двумя точками в пространстве Минковского. «Следовать» этой геодезической означало бы, что вы прибываете в пункт назначения в тот же момент, в который покидаете пункт отправления, что, разумеется, невозможно.
Второй тип геодезической – времениподобная: это траектория, по которой естественно движутся массивные тела, если на них не действуют никакие силы, кроме тяготения. Пример такой геодезической – баллистическая траектория движения Алисы в гравитационном поле и свободный полет Боба в пространстве, где не действует гравитация. Времениподобные геодезические максимизируют собственное время, как мы уже видели при нашем обсуждении нескольких версий парадокса близнецов. В самом деле, принцип оптимального собственного времени получает свое полное выражение в требовании, чтобы массивные тела в пространстве-времени произвольной кривизны двигались по времениподобным геодезическим.
В общей теории относительности есть и еще один тип геодезической – нулевая. По такой траектории естественно движется световой луч в искривленном пространстве-времени. Иногда геодезические в общей теории относительности называют «пространственно-временными геодезическими», чтобы подчеркнуть, что они содержат информацию как о времени, так и о пространстве. Но на практике большинство людей говорит просто «геодезическая», и мы впредь будем придерживаться этой сокращенной терминологии.
Рис. 2.5.
Земля заставляет пространство деформироваться, что на рисунках часто изображается линиями, прогибающимися вниз. Пространство действительно искривляется вблизи массивного тела, но эта кривизна внутренняя: она соответствует искажению пространства внутри себя, а не его изгибу в какое-то дополнительное измерение.Когда мы переходим от двумерных поверхностей к четырехмерному пространству-времени, кривизна количественно начинает выражаться более сложно, но, в принципе, ее концепция остается той же: ответ на вопрос об углах, под которыми встречаются геодезические, может отличаться от случая плоского пространства, и это отличие выражается так называемым тензором кривизны Римана. Тензор Эйнштейна
По крайней мере в рамках современных представлений в пространстве-времени не может искривляться ничего, кроме самих его четырех измерений. В общей теории относительности «правильные» вопросы о кривизне – это те, на которые можно ответить на основе геодезических в четырехмерном пространстве-времени. И нам нет нужды думать о том, чтобы «срезать» траектории движения путем выхода в какую-то внешнюю геометрию – как мы могли бы срезать путь из Вашингтона в Сан-Франциско, построив подземный туннель. Обычно, когда мы пытаемся изобразить искривленное пространство-время на рисунках, иллюстрирующих влияние тяготения, мы изображаем его как двумерную мембрану, которая прогибается в сторону массивного тела. Такое изображение предполагает существование дополнительного измерения, в которое и прогибается мембрана.
Этот способ иллюстрирования вполне приемлемый, и не в последнюю очередь потому, что он позволяет визуализировать небольшое «раскрывание» пространства в окрестности массивного тела. Но насколько нам известно, реальный мир имеет именно четыре измерения, и четырехмерное пространство-время искривляется само по себе, без привлечения какого-либо пятого измерения[4]
.