[Сама проблема — как научить их работать систематично — остаётся, и она кажется мне очень важной. Это и важный навык сам по себе, и, как мы видели, путь к доказательству. У меня на эту тему нет никаких соображений. Впрочем, Алла считает, что эта проблема решается очень легко: нужно просто подождать лет пять.]
В целом занятие прошло в довольно-таки нервозной обстановке из-за того, что мальчики всё время между собой дрались (все три пары), а также всё время спорили, кто будет первым. Едва ли не треть занятия ушла на то, чтобы их разнимать, пересаживать, улаживать конфликты и проч. Был даже момент, когда я хотел совсем прекратить занятие, до того разозлился.
Это занятие является вдвойне юбилейным: во-первых, оно пятидесятое по счёту, а, во-вторых, 23 марта нашему кружку исполняется два года. Обо всём этом я сказал ребятам, что, однако, не произвело на них никакого впечатления. Главная причина в том, что я сам не умею создавать атмосферу праздника — не умею делать артистических жестов и говорить торжественным голосом. Вторая причина в том, что для ощущения праздника нужно о нём знать заранее и ждать его, а я почему-то от ребят это скрыл, надеясь на «сюрприз».
(Номинально мы занимаемся раз в неделю. Фактически же, как легко посчитать, получается раз в две недели — вмешиваются то каникулы, то болезни, то ещё что-нибудь. Впрочем, этот ритм совершенно разумен. У французских студентов, например, учебный год делится на два семестра по 12 недель, т. е. почти так же, как у нас на кружке. У студентов, правда, бывают ещё две экзаменационные сессии, а у нас нет.)
Всё занятие состояло из того, что я прочитал мальчикам сказку Ежи Цвирко-Годыцкого «Как победить колдунью». Заодно мы решили все задачи, содержащиеся в этой сказке, а также познакомились со знаками
В конце занятия я подарил каждому из мальчиков по шоколадке и по блокнотику (поскольку Дима и Петя захотели один и тот же блокнотик, пришлось бросать жребий; выиграл Дима).
Задание 1. Дорожки из палочек (задача Шеминской[25]
). Имеются две группы палочек: длинные и короткие; отношение длин 7:5. Для того, чтобы их было легче отличать, все длинные палочки — красные, а все короткие — зелёные. Все они сделаны из «палочек для счёта» (для первоклассников).Я складываю зигзагообразную дорожку из длинных палочек (рис. 84) и прошу ребят сложить дорожку такой же длины из коротких палочек.
Рис. 84.
К моему удивлению, никто не стал прикладывать вторую дорожку рядом, под первой. Все они стали строить свои дорожки в разных концах стола, пытаясь имитировать форму моей дорожки. Но поскольку их изобразительные возможности ещё ниже логических, у них у всех вышли какие-то жуткие рогули, нисколько не похожие на мою дорожку. Никаких аргументов в обоснование одинаковости длины никто не привёл. Иногда кто-нибудь из ребят колебался, добавлять или не добавлять к своей дорожке ещё одну палочку.
Надо было что-то обсудить, но я не знал, к чему прицепиться. Всегда, когда в качестве ответа вместо неверного утверждения получаешь бессмысленное, попадаешь в тупик; и сейчас ситуация была аналогичной. Тогда я просто ввёл новое условие: все зелёные дорожки должны быть прямыми.
Началось строительство прямых дорожек, но опять никто не построил новую дорожку под старой. Я не выдержал и сказал:
— А вот так будет правильно? — и сам сделал зелёную дорожку из 4 коротких палочек прямо под красной дорожкой, так что концы пришлись к концам (рис. 85).
Рис. 85.
Дима ответил, что так всё будет правильно. Женя сказал:
— Неправильно, нужно 5 палочек, — и с этими словами распрямил мою исходную дорожку-зигзаг и стал прикладывать к ней рядом зелёные палочки.
Но ещё в процессе работы Петя закричал:
— Они короткие!
В самом деле, пяти палочек не хватило; Женя поколебался и добавил ещё две палочки, стало 7, и дорожки сравнялись.
Тут Дима с подчёркнутой иронией стал говорить:
— Да! Конечно! Одинаковые! Вот смотрите: одинаковые!