В каждый момент времени наш мозг получает весьма ограниченный объём данных. Однако то, что вы воспринимаете, — значительно более сложная модель, нежели та, которую можно было бы создать, используй мы только эти, исходные данные.
Как такое возможно? Благодаря той самой генерации сложности.
Информация от окружающей реальности поступает на наши сенсоры в виде аналогового сигнала — химических, электромагнитных, механических и прочих раздражителей.
Непосредственно здесь этот внешний импульс — фотон, молекула вещества, колебание рецептивной структуры (в случае органа слуха) и т. д. — преобразуется нейроном в импульс внутренний, уже электрохимический.
По сути дела, происходит перевод аналоговой информации в специфическую нейронную информацию,
и это уже своего рода удвоение. Но это пока только семечки.Дальше больше: возникший нейронный импульс проходит по соответствующим нейронным трактам, разветвляясь, по сути, множась, запуская целый каскад реакций в этих отделах мозга.
Наша сетчатка является поставщиком сигнала (условно одного) как минимум для трёх разных областей мозга:
в стволе мозга
копия этого импульса побуждает к активности клеток ретикулярной формации,в подкорке копия
того же импульса обрабатывается в верхних буграх четверохолмия («подкорковый зрительный центр»),• наконец, зрительный анализатор в коре головного мозга
— причём тут тоже целый каскад реакций (первичная, вторичная и третичная зрительная кора — рис. 53).Рис. 53.
Первичная зрительная кора, отвечающая за восприятие объекта как некоего целого и функции движения,
позволяет вам понять, что на вас, допустим, движется некий объект.Вторичная зрительная кора детализирует этот объект,
вы уже видите перед собой не просто какой-то размытый образ, а некую структуру на фоне сопутствующих обстоятельств — это человек.То есть у этого бегущего на вас объекта появляются голова, руки, ноги — по крайней мере, что-то из этого вы начинаете определять, плюс вы видите прохожих вокруг, дома, дорогу.
Наконец, третичная зрительная кора, которая, по сути, совпадает с зоной ассоциативной коры в теменной доле, превращает то, что вы видите, в нечто для вас «понятное»…
Вы узнаете человека, который бежит на вас, можете интерпретировать его поведение — он вас убить хочет или это близкий друг, которого вы долго не видели.
Тут же вы успеваете подумать о дороге, которую он собирается пересечь, припоминаете, когда последний раз с ним встречались, и т. д.
В общем, вся ваша память — мириады связанных друг с другом нейронных сетей — разворачивается здесь, в третичной зрительной коре. В полный рост и во всей красе.
Итак, нехитрый вроде бы сигнал на входе, а какую активность он порождает на выходе!
Напомню, что там ещё работали кортикальные колонки с «палочками» и «огуречиками» Визеля и Торстена, которые позволили зрительной коре воспроизвести в себе, причём используя минимум данных, полноценный зрительный образ.
А что уж творилось на клеточном и субклеточном уровне — это и вовсе трудно описать! Ведь каждая потревоженная связь порождала активность каких-то ещё смежных отделов, поэтому у вас, поверьте, постепенно вовлёкся в дело не только нейросетевой парадный строй, но ещё и заиграл объединённый биохимический оркестр.
Что ж, давайте ещё раз посмотрим на произошедшее:
• на сетчатке глаза располагается 6–7 миллионов колбочек и 110–125 миллионов палочек (можно перемножить на два, поскольку у нас два глаза, но в любом случае это по неврологическим меркам почти ничего), они контактировали с аналоговым сигналом (фотоны света), в результате чего на сетчатке возник какой-то рисунок возбуждения — вот и весь «вход»,
• а на «выходе» же мы имеем сложную модель мира, потревоженную стимулом, комплексную реакцию самого мозга и организма в целом, наконец, определённое социальное взаимодействие, детерминированное не только ситуативно, но и культурноисторически, что опять-таки обусловлено всё тем же мозгом.
Понятно, что на разных уровнях организации мозга — субклеточном, клеточном, сетевом, функциональном — «сложность», о которой мы с вами говорим, разная. Но важен сам принцип: мало на входе — много на выходе.
За счёт чего мозгу удаётся производить большое из малого?
Прежде всего, как мы могли видеть, это возможность клонирования изначального стимула.