Определение
. ЕслиНе будем доказывать здесь, но можно показать, что для квадратных матриц если
Прежде чем научиться вычислить обратную матрицу, проанализируем, всегда ли такая матрица будет существовать. Например,
Попытка найти обратную матрицу в общем случае даст больше понимания проблемы. Зададимся вопросом, чем заполнить матрицу в уравнении
Сосредоточившись на правом верхнем элементе произведения, легко получить там ноль, поместив
Определение
. Детерминантом (или определителем) квадратной матрицыФормула для обращения квадратной матрицы второго порядка теперь выглядит следующим образом: если
В общем случае обращение матрицы происходит по формуле
Пример
.Поскольку не каждая матрица имеет обратную, невозможно найти универсальную формулу для обращение любой матрицы. Иногда что-то будет мешать. Глядя на формулу, видим, что она не имеет смысла, при
Теорема
. Квадратная матрица обратима тогда и только тогда, когда ее определитель не равен нулю.Пример
. МатрицаДля матриц размерности 3 x 3 и выше, ручное вычисление обратной матрицы (если она существует) через детерминант очень громоздко. Несмотря на то, что задача алгоритмически разрешима и хорошо распараллеливается процесс вычисления по формулам обращения любой квадратной матрицы, они слишком сложны, чтобы быть полезными с практической точки зрения. Поэтому обратные матрицы обычно вычисляются с помощью другого метода, называемого методом Гаусса-Джордана, который преподается на курсах линейной алгебры. Для нужд математического моделирования громоздкие операции с большими матрицами выполняются средствами программного обеспечения, такого как MATLAB, чтобы ускорить вычисления.
Однако важно помнить, что не каждая матрица будет иметь обратную. Если попытаетесь вычислить значение, когда его не существует, MATLAB сообщит об этом. К счастью, большинство квадратных матриц обратимы. По этой причине необратимые матрицы называются особенными, сингулярными или вырожденными.
Вернемся к первоначальной проблеме нахождения обратной матрицы.
Пример
. Для леса, моделируемого в разделе 2.1, предположим, что в момент времениЗадачи для самостоятельного решения:
2.2.1. Первый раздел настоящей главы начинается с двух примеров моделей популяции. Является ли каждая из них моделью Лесли? Является ли каждая из них моделью Ашера? Объясните, почему, описав форму матриц перехода для них.
2.2.2. В MATLAB создайте матрицу Лесли для модели численности населения, описанной с помощью команд
sd=[0.9966, 0.9983, 0.9979, 0.9968, 0.9961, …
0.9947, 0.9923, 0.9987, 0.9831]
P=diag(sd,-1)
P(1,:)=[0.0000, 0.0010, 0.0878, 0.3487, 0.4761, …
0.3377, 0.1833, 0.0761, 0.0174, 0.0010]
Для нескольких вариантов начальных значений популяции постройте графики популяции в течение следующих 10 временных шагов. Опишите свои наблюдения.
2.2.3. Без помощи компьютера найдите определители и обратные матрицы для следующих матриц
inv(A)
det(A)
Александр Николаевич Боханов , Алексей Михайлович Песков , Алексей Песков , Всеволод Владимирович Крестовский , Евгений Петрович Карнович , Казимир Феликсович Валишевский
Биографии и Мемуары / История / Проза / Историческая проза / Учебная и научная литература / Образование и наука / Документальное