Многие родители не понимают важность математической глубины; они ошибочно полагают, что их детям пойдет на пользу ускоренное изучение материала. Такие родители делают все возможное, чтобы их дети досрочно переходили в следующие классы и им как можно раньше преподавали математику на углубленном уровне. Но изучение математики — не гонка, а математическая глубина вдохновляет учеников и обеспечивает их вовлеченность и эффективную работу, готовя их к углубленному изучению математики в будущем. Именно ученики, которых вынуждают быстрее проходить материал, чаще всего при первой же возможности бросают математику (Jacob, 2015; also Boaler, 2015b). Необходимо, чтобы все ученики занимались математикой с полной отдачей; ни для кого она не должна быть слишком легкой и никого нельзя заставлять повторно отрабатывать те или иные концепции, если он уже усвоил их. Один из лучших и самых важных способов стимулирования сильных учеников состоит в том, чтобы дать им возможность глубже изучать концепции. Причем они могут делать это вместе с другими учениками, которые способны глубже проанализировать эти концепции в другие дни. В работе со своими студентами из Стэнфорда я использую такой метод: предложить тем, кто закончил задание, расширить его, двигаясь в новом направлении.
Недавно я поставила своим студентам из Стэнфорда задачу под названием «Раскрашенный куб» и раздала им коробки с кубиками сахара, чтобы они могли смоделировать ее (пример 9.7 и рис. 9.7).
Представьте себе куб 5 × 5 × 5, внешние грани которого раскрашены в один цвет, причем этот куб состоит из меньших кубиков размером 1 × 1 × 1.
Ответьте на следующие вопросы.
У скольких маленьких кубиков будет 3 раскрашенные грани?
У скольких маленьких кубиков будет 2 раскрашенные грани?
У скольких маленьких кубиков будет 1 раскрашенная грань?
У скольких маленьких кубиков не будет раскрашенных граней?
Рис. 9.7.
Раскрашенный куб 3 × 3 × 3Некоторые студенты выполнили задачу, построив куб меньшей размерности (например, 3 × 3 × 3) из кубиков сахара, и разрисовали внешние грани, чтобы проанализировать распределение кубиков с разным количеством раскрашенных граней. Я сказала им, что после решения задачи для куба размерами 5 × 5 × 5 они могут расширить задачу каким угодно способом. Это была лучшая часть урока: у студентов появлялось гораздо больше возможностей для обучения, поскольку разные группы анализировали, например, как найти решение задачи с пирамидой вместо куба (рис. 9.8); одна группа анализировала соотношения в пирамиде, составленной из пирамид меньшего размера, а еще одна работала над соотношениями в случае перемещения куба в четвертое измерение, а затем и в
Рис. 9.8.
Расширенная задача с кубомЕсли дать ученикам возможность расширять задачи, они почти всегда находят творческие и увлекательные возможности для углубленного анализа математических концепций, что для них очень ценно.
Свяжите математику с реальным миром с помощью моделирования
Школьники объясняют свою неприязнь к математике в первую очередь ее абстрактным характером и якобы несоответствием реальному миру. Как ни печально, это отражает преподавание математики в школе: ведь на самом деле она повсюду. Она настолько важна для успешной жизни, что ее назвали новым «гражданским правом» — важным элементом эффективного функционирования в обществе (Moses & Cobb, 2001). Когда я проводила интервью с группой молодых людей в возрасте 24 лет, которые только что получили традиционное математическое образование, и спросила их о роли математики в их жизни и работе, они выразили разочарование в связи с полученным образованием. Эти молодые люди сказали, что видят математику повсюду в окружающем мире и каждый день используют ее в своей работе, но опыт ее изучения в учебных заведениях не дал им ощущения реальной природы математики и ее важности для их будущего. По их словам, если бы они знали, что математика — не мертвая дисциплина, не имеющая отношения к реальности, и что она может сыграть важную роль в их взрослой жизни, это полностью изменило бы их мотивацию на уроках в школе.