Необходимость сделать математику интересной и связанной с реальным миром часто приводит к тому, что ее ставят в ситуацию, которую я называю «псевдоконтекстом» (Boaler, 2015a), призванным отражать реальность. Ученики работают над придуманными задачами из реального мира, которые далеки от реальности, как в случае поездов, которые мчатся навстречу друг другу по одному пути. Такой контекст не помогает ученикам узнать, что математика — полезная дисциплина. Он создает противоположное впечатление: будто математика — нечто чуждое и нереальное. Чтобы ученики могли успешно решать искусственные задачи из реального мира, им предлагают представить себе, что ситуация реальна, игнорируя при этом все, что они знают о жизни. Возьмем в качестве примера такие типичные задачки.
• Джо может выполнить работу за 6 часов, а Чарли — за 5 часов. Какую часть работы они могут выполнить, работая вместе 2 часа?
• Ресторан берет 2,5 доллара за 1
/8 часть пирога. Сколько стоит весь пирог?• Пицца разделена на 5 кусочков для 5 друзей на вечеринке. Три друга съедают свои кусочки пиццы, но потом приходит еще 4 друга. На сколько частей следует поделить два оставшихся кусочка пиццы? (Boaler, 2015a)
Все эти вопросы взяты из опубликованных учебников, подобные задачи дети решают на уроках математики. Однако они лишены смысла. Всем известно, что люди работают вместе не с той же скоростью, что и по отдельности; рестораны назначают другую цену на большие порции, а если на вечеринку приходит больше друзей, заказывают еще одну пиццу — никто не режет оставшиеся кусочки. В итоге дети приходят к выводу, будто математика не имеет отношения к реальной жизни. На самом деле многие считают, что, приходя на урок математики, они попадают в
Как же помочь ученикам увидеть широкое применение математики и ее практическую ценность, не прибегая к псевдоконтексту? В мире есть множество удивительных ситуаций, которые можно объяснить с помощью математики. Мой онлайн-курс помог слушателям понять это, показав им математику в снежинках, работе пауков, жонглировании и танцах, а также в криках дельфинов. Такая математика охватывает все уровни: от начальной школы до старших классов (Stanford Online Lagunita, 2014). Не все математические задачи могут или должны быть помещены в контекст реального мира: некоторые из самых замечательных задач, с помощью которых школьники осваивают количественное мышление, не имеют контекста. Но важно сделать так, чтобы ученики хотя бы время от времени видели применимость математики и работали с переменными из реального мира.
Конрад Вольфрам призывает тех, кто смотрит его выступление на TED, рассматривать математику как дисциплину, во главе угла которой находится постановка вопросов и формирование математических моделей (Wolfram, 2010). Он подчеркивает, что моделирование занимает центральное место в математике этого мира. В стандартах Common Core также делается акцент на моделировании как стандартной математической практике.
Моделирование с помощью математики
На мой взгляд, один из важнейших аспектов вклада стандартов Common Core состоит в том, что они включают в себя математическую практику: действия, которые важны для математики и которые ученикам необходимо выполнять, осваивая эту науку. «Моделирование с помощью математики» — один из восьми стандартов математической практики (см. врезку).