Потратив много сил на выполнение этого задания, учителя с удивлением обнаружили, что все их варианты находятся в треугольнике Паскаля. Именно этот момент растрогал Элизабет до слез, и я ее понимаю. Для любого человека, который воспринимал математику как совокупность несвязных процедур, а затем получил возможность исследовать визуальные и числовые закономерности, научившись видеть и понимать связи, это сильнейший опыт. Тогда Элизабет и обрела уверенность в своих интеллектуальных возможностях и способности самостоятельно обнаруживать математические идеи и связи.
С этого момента отношения Элизабет с математикой изменились, и она уже никогда не возвращалась к прошлому. Я встретилась с ней год спустя, когда она снова проходила курс Рут Паркер, чтобы освоить еще более эффективный подход к изучению математики. Элизабет рассказала мне обо всех замечательных изменениях, которые она внесла в свои методы преподавания, и о трепетном отношении ее подопечных к математике.
Опыт нового в
Этот пример связан с задачей, которую я использовала в работе со своей группой по подготовке учителей в Стэнфорде и с другими группами учителей. Она вызывает такое сильное воодушевление, что не рассказать о ней нельзя. Это одна из задач на рост закономерности, но с одним дополнением, которому я и хочу уделить особое внимание. Задачу придумал Карлос Кабана — замечательный учитель, с которым я работаю. В примере 5.4 показана задача, которую он обычно ставит ученикам.
1. Как выглядел бы рисунок 100?
2. Представьте себе, что вы могли бы продолжить построение этой модели в обратном направлении. Сколько ячеек было бы на рисунке –1? (Да, рисунок минус один, что бы это ни значило!)
3. Как выглядел бы рисунок –1?
Один из вопросов, поставленных в этой задаче, звучит так: сколько ячеек было бы на рисунке –1 (если бы нужно было продолжить закономерность в обратном направлении, сколько ячеек было бы на шаге –1)? Задавая этот вопрос учителям, я обнаружила, что им легко найти ответ. Гораздо более интересным и сложным был вопрос о том, как выглядел бы рисунок на шаге –1. Когда я включила этот вопрос в задачу, произошло кое-что поразительное. Решение (которое я не буду здесь раскрывать) требует напряженных размышлений; учителя шутили, что, когда они пытались найти это решение, у них заболела голова и произошло возбуждение синапсов. Существует ряд способов добраться до шага –1 и правильных вариантов визуального представления. Но и числовое решение не единственное. Задача перемещается в неизведанную и захватывающую область — анализ вопроса о том, что такое отрицательный квадратный корень. Некоторые учителя поняли, что им необходимо поразмышлять об
Рис. 5.16.
Дилемма с параболойЭтот вопрос показался членам группы очень увлекательным, и они активно старались во всем разобраться. В конце занятия будущие учителя пришли к выводу, что испытали истинное воодушевление и знают, какие ощущения хотят вызывать у своих учеников на уроках.
Но что именно вызвало такое воодушевление? Когда недавно я поставила эту задачу ведущим учителям в Канаде, она так увлекла их, что я не могла заставить их остановиться. Кое-кто даже шутил по этому поводу. В Twitter появилось сообщение: «Джо Боулер не может оторвать нас от задачи, которую нам поставила».