Как я упоминала в главе 4
, Себастьян Трун поведал мне, насколько важную роль сыграла интуиция в его работе. Он сказал, что ему не удавалось продвинуться в решении задачи, если у него не было интуитивного ощущения, что он на верном пути. Математики также подчеркивают роль интуиции в их работе. Леоне Бертон провела опрос среди 70 математиков, занимающихся научными исследованиями, и 58 из них отметили этот факт (Burton, 1999). Рубен Херш пришел к тому же выводу: «Интуиция в математике повсюду» (Hersh, 1999). Так почему же ее не применяют на большинстве уроков математики? Многие дети даже не представляют себе, что интуиция нужна при решении задач. Когда ученикам предложили поразмышлять над определением объема лимона, их попросили прибегнуть к интуиции. С ее помощью можно решать многие математические задачи. Детям помладше стоит дать разные треугольники и прямоугольники и предложить подумать, как найти площадь треугольника,Следующий пример взят из семинара по профессиональному развитию, за которым я наблюдала. Мероприятие вела Рут Паркер — удивительный педагог, которая организует для учителей семинары, помогающие им понять математику на совершенно новом уровне. Я выбрала именно этот пример, поскольку в тот день увидела то, с чем сталкивалась впоследствии неоднократно: задачу, которая позволила учительнице по имени Элизабет увидеть настолько сильную математическую связь, что она расплакалась. Элизабет — учительница начальной школы, которая, как и многие другие, преподавала математику как набор процедур. Она не знала, что это наука, в которой есть много глубоких связей. Люди, которые всегда считали математику бессвязным набором процедур, нередко волнуются, когда видят глубокие связи в математике.
Семинар Рут, как и обучение в нашей летней школе, был сосредоточен на алгебраическом мышлении. Ведущая давала учителям много задач на определение функциональных закономерностей. В тот день Рут выбрала интересную задачу из категории «низкий пол, высокий потолок»: с виду простую, но на деле сложную и глубокую. Учителя, которые принимали участие в семинаре, после этого начали изучать экспоненциальный рост и отрицательные показатели степени.
Элизабет и другие учителя приступили к работе, раскладывая и упорядочивая цветные счетные палочки Кюизенера, чтобы найти все способы формирования последовательностей, соответствующих длине трех выбранных ими палочек. Некоторые решили начать с палочки длиной 10 — и задача заметно усложнилась, поскольку существует 1024 способа образовать последовательности такой же длины, что и палочка длиной 10! Рут знала, что ее задача не в том, чтобы избавлять учителей от проблем, а в том, чтобы дать им возможность погрузиться в математические детали задачи. Поднапрягшись, некоторые из этих учителей вспомнили то, что узнали на семинаре немного раньше: важный математический навык, которым ученики могут так и не овладеть за одиннадцать лет, — начинать с меньшего. Учителя поработали со счетными палочками разной длины и увидели, как формируется закономерность и на визуальном, и на числовом уровне (пример 5.2).
Определите, сколько разных последовательностей можно составить для палочек любой длины. Например, для светло-зеленой палочки можно составить четыре последовательности.
И тут Рут показала учителям треугольник Паскаля и предложила им исследовать его связь с задачей с палочками Кюизенера и знаменитым треугольником (см. пример 5.3).