Большинство взрослых учило таблицу умножения посредством зубрежки, читая ее подряд, как стихи. «Единожды четыре – четыре, дважды четыре – восемь, трижды четыре – двенадцать…» и т. д. Как правило, таблица умножения на отдельные числа заучивали последовательно – сначала таблицу умножения на два, затем на три… и так далее вплоть до 10. Существовало два способа заучивания таблицы – то число, на которое идет умножение, можно было называть либо первым, либо вторым. Так что вместо варианта «единожды четыре это четыре, дважды четыре – восемь…» вы, возможно, учили так: «четырежды один – четыре, четырежды два – восемь, четырежды три – двенадцать…»
Вне зависимости от порядка называния чисел, зубрежка, конечно, работает. Не исключено даже, что распевное «четырежды восемь – тридцать два» звучит у вас в ушах всякий раз, когда вы решаете примеры; кроме того, дети вообще хорошо заучивают на слух. Еще одно преимущество зубрежки вслух состоит в том, что это повторяющийся процесс, и можно не сомневаться, что если повторять что-то достаточно часто, то рано или поздно это запомнится, причем как следует. Поэтому если вашему ребенку нравится читать таблицу умножения нараспев, не мешайте ему, лучше похвалите.
Однако не всем детям нравится декламировать вслух и учить наизусть. К тому же распевная декламация таит в себе еще одну опасность. Поскольку строки в таблицах не рифмуются, можно спокойно декламировать их в правильном ритме – но с совершенно неверными ответами. «Четырежды восемь – тридцать шесть» слетает с языка не менее гладко, чем «четырежды восемь – тридцать два». Невозможно мгновенно определить, который из ответов верен, – можно только полагаться на собственную память. Ни в каком другом случае проблема дырявой памяти не проявляется так ярко, как с примером 7 × 8.
Если вы хотите понять, действительно ли человек знает таблицу умножения,
Чтобы запомнить, чему равно семь умножить на восемь, просто запомните последовательность цифр: 5, 6, 7, 8 (56 = 7 × 8).
Порядок заучивания таблицы
Заучивание таблиц умножения по порядку – сначала на два, затем на три, затем на четыре и т. д. – не самый эффективный способ выучить все, что нужно. Наиболее естественная для детей схема заучивания таблицы состоит в том, чтобы начать с самого простого и постепенно двигаться к самому сложному. Разумна такая последовательность:
• Умножение на десять (10, 20, 30…), которое дети усваивают естественно в процессе обучения счету.
• Умножение на пять (все-таки у всех нас по пять пальцев на руках и ногах).
• Умножение на два. Пары, четные числа и удвоение знакомы даже маленьким детям.
• Умножение на четыре (ведь это всего лишь удвоение умножения на два) и восемь (удвоение умножения на четыре).
• Умножение на девять (существуют достаточно удобные приемы, см. ниже).
• Умножение на три и шесть.
• Умножение на семь.
Советы относительно того, как помочь детям усвоить эти таблицы, можно найти в этой же главе ниже.
Почему 3 × 7 равно 7 × 3
Помогая ребенку выучить таблицу умножения, очень важно объяснить ему, что порядок чисел не имеет значения: 3 × 7 дает тот же ответ, что и 7 × 3. Математикам эта мысль так нравится, что они придумали для нее особое название: коммутативный
закон.Взрослым серьезнейшая идея о том, что умножению свойственна коммутативность, обычно кажется самоочевидной. С детьми все по-другому. Нужно немало времени, чтобы эта идея закрепилась в сознании мальчика или девочки, – ведь при знакомстве с умножением это его качество, как правило, явно не проявляется. Если у Джо есть три пакетика с конфетами, в каждом из которых лежит по семь конфет, а у Сэма – семь пакетиков с тремя конфетами в каждом, не слишком очевидно, что у Джо ровно столько же конфет, сколько и у Сэма. (Если предложить маленькому ребенку два этих варианта, он с большой вероятностью выберет семь пакетиков в надежде получить больше конфет.)
Один из лучших способов наглядно показать ребенку, почему 3 × 7 равно 7 × 3, заключается в использовании массива
. «Массив» – слово, которого вы, вероятно, не встречали в курсе школьной математики, но сегодня оно прочно вошло в соответствующий лексикон и активно используется. Это специальное математическое слово, обозначающее набор чисел или фигур, заключенный в прямоугольник. Вот, к примеру, массив из трех строк и семи столбцов.