Массив – чрезвычайно важное понятие, это простое и визуальное средство помочь ребенку разобраться в том, как работают умножение и дроби. Сколько всего точек в прямоугольнике 3 на 7? Три строки по семь элементов насчитывают 21 элемент. Иными словами, массивы – доступный для понимания способ наглядно представить умножение, в данном случае 3 × 7 = 21.
Что, если мы нарисуем массив двумя разными способами?
Первый массив показывает 3 × 7, второй 7 × 3. (Традиционно эти схемы «читаются» в таком порядке: строки, затем столбцы.) Очевидно, что в обоих массивах должно быть одинаковое число точек (их не обязательно при этом считать поштучно), поскольку, если первый массив повернуть на четверть оборота, он будет выглядеть в точности как второй. Иными словами, 3 × 7 = 7 × 3.
И в самом деле, каким бы ни был массив (или какие бы числа вы ни перемножали), ответ будет один и тот же, с какой стороны ни посмотри. 247 × 196 – то же самое, что 196 × 247, и чтобы в этом убедиться, достаточно вспомнить о массивах.
Оглядитесь, поищите рядом, в доме или на улице, какие-нибудь массивы. Покажите их своему ребенку, поговорите о них. Взгляните, к примеру, на пластиковый подносик с пирожными в коробке. Пирожные на нем уложены в массив 4 на 3. А если повернуть? Тогда 3 на 4. А теперь взгляните на окна многоэтажки. Вот это да, это тоже массив, 5 на 4! А может быть, 4 на 5, как посмотреть? Этого мало. Стоит начать обращать внимание на массивы, как выяснится, что они всюду.
Как уполовинить таблицу умножения
Если вы уже усвоили с детьми идею о том, что 3 × 7 – это то же самое, что 7 × 3, то число фактов умножения, которые вам необходимо запомнить, резко уменьшается. Стоит заучить 3 × 7 – и в качестве бонуса вы получаете ответ на 7 × 3. Это, по существу, математический эквивалент рекламного приема «купи один, второй получи бесплатно». Знание этого переместительного закона снижает число фактов умножения со 100 до 55 (не ровно наполовину из-за случаев возведения в квадрат, таких как 3 × 3 или 7 × 7, которые не имеют пары).
Можно увидеть, как происходит это снижение, если еще раз посмотреть на 100 чисел в таблице умножения на 10, приведенной ранее.
Каждое из чисел, расположенных выше пунктирной диагонали (к примеру, 5 × 8 = 40), присутствует и ниже нее (8 × 5 = 40). Пунктирная диагональная линия является также линией симметрии. (Обратили внимание, какие числа стоят на пунктирной линии? См. ниже.)
Дети обычно начинают учить таблицу умножения при помощи счетных алгоритмов. Чтобы сообразить, чему равно 8 × 4, они считают так: 4, 8, 12, 16, 20, 24, 28, 32. Но если ты знаешь, что восемью четыре – то же самое, что четырежды восемь, то 8, 16, 24, 32 будет быстрее. В Японии детей специально учат «ставить меньшее число первым». Семь раз по 3? Не делайте так, считайте лучше 3 раза по 7.
Заучивание квадратов чисел
Результат умножения числа на само себя (1 × 1, 2 × 2, 3 × 3 и т. д.) известен как квадрат числа
. Это потому, что графически такое умножение соответствует квадратному массиву. Если вы вернетесь к таблице умножения и посмотрите на ее диагональ, то увидите, что всю ее составляют квадраты чисел.В дальнейшем эти величины так часто всплывают в школьном курсе математики, что имеет смысл выучить их отдельно от остальной таблицы. У них есть интересная особенность, которую вы можете исследовать вместе с ребенком. Перечисляя квадраты чисел – 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, обратите внимание, на сколько они каждый раз увеличиваются:
Эта любопытная связь между квадратами чисел и нечетными числами – прекрасный пример того, как разные виды чисел
Десятки и пятерки
Первая и самая простая таблица, которую следует заучить – таблица умножения на 10: 10, 20, 30, 40… По существу, это простое расширение последовательности 1, 2, 3, 4.