Читаем Математика для мам и пап: Домашка без мучений полностью

Задействованная здесь математика несложна, но от детей ожидают понимания, что такое «четырехзначное число»; у многих формальный язык и достаточно абстрактная суть задачи вызывают затруднения. Опять же, эту задачу легко решить методом проб и ошибок, поэтому 30 × 30 = 900 (слишком мало), 35 × 35 = 1225 (слишком много), а правильный ответ находится перебором промежуточных чисел.

Вообще-то весь этот «метод тыка» буквально напрашивается на то, чтобы отбросить его и поискать какой-нибудь хитрый ход, чтобы решить задачу проще. Приведем один такой ход для тех детей, кто знает, что умножение числа на само себя называется «возведением в квадрат», и уверенно владеет этим понятием. Чтобы найти число, которое при возведении в квадрат дает наименьшее четырехзначное число, достаточно просто ввести на калькуляторе 1000, а затем нажать кнопку квадратного корня. Корень из 1000 равен 31,62… Первое натуральное число, которое при возведении в квадрат даст четырехзначный ответ, получится, если округлить 31,62 вверх до следующего целого числа, то есть до 32.

Ф. 200 (иными словами, 30 % от 200 равно 60).

Итак, если бы этот вопрос звучал как: «Чему равны 30 % от 200?», он был бы не сложнее вопроса Т. Но вместо этого хитрые экзаменаторы вывернули вопрос наизнанку. А дети зачастую начинают путаться даже в несложных вопросах, если их задают необычным образом. Для многих единственным доступным методом здесь будет опять же метод проб и ошибок и постепенного подбора; откровенно говоря, многие родители действовали точно так же. Но на самом деле возможных стратегий множество. Вот две из них:

• Для начала поймите, что если 30 % от некоего числа равны 60, то 10 % от того же числа должны быть равны 20 (для этого нужно просто все поделить на 3). А если 10 % от чего-то равны 20, то 100 % равны 200.

• Если 30 % от X равны 60, то X должен быть равен 60, деленным на 30 %; это то же самое, что 60: 0,3, а это равно 200 (калькулятор подтвердит).

Х. 21



У этого вопроса есть несколько верных ответов, хотя это, пожалуй, больше беспокоит родителей, чем детей (дети обычно счастливы найти хотя бы один). Составить пример гораздо сложнее, чем применить какие-то правила и просто выполнить заданные действия; ожидается, что для начала дети должны попробовать какое-то произвольное число и только потом найти стратегию решения. Самый очевидный ключ в данном конкретном случае: поскольку в результате суммирования получается 426, то в сотенном разряде во втором слагаемом никак не может стоять 8; следовательно, это 3. Еще один важный указатель – то, что две цифры разряда единиц при сложении дают число, оканчивающееся на 6. Это может быть 3 + 3 или 8 + 8. В разряде десяток должны стоять 3 и 8, а дальнейшие рассуждения дают ответы, которые приведены выше.

Ц. 5, 7 и 11.

Для ответа на этот «детективный» вопрос, необходимо помнить, что такое простое число, – что легко забывается, если вы со школы не имели с ними дела. В принципе, слово «простых» из вопроса можно было бы исключить и попросить найти просто три числа, которые при перемножении дают 385, но при этом многие, без сомнения, выбрали бы вариант 1 × 1 × 385, который экзаменаторам совершенно не нужен.

Поэтому нам приходится искать три числа, ни одно из которых не равно 1 и которые при перемножении дают 385 (и, так уж получилось, являются простыми). Первая подсказка здесь – пятерка на конце числа 385; это означает, что одним из делителей должно быть число 5. Далее делим 385 на 5, получаем 77; и, конечно, 77 = 7 × 11.

Ч. 8°

Многие родители сразу сдаются, видя эту задачу, поскольку для ее решения требуются знания, которых у большинства мам и пап уже нет. Два ключевых момента здесь – знать, что все углы в прямоугольнике прямые, то есть по 90°, тогда как в равностороннем треугольнике все углы одинаковы и равны 60°. Тогда X = 90 – 60 – 22.

Если вы опасаетесь, что вашему ребенку трудно будет решить задачу, предполагающую так много шагов, вас, может быть, немного успокоит тот факт, что справляется с ней менее 20 % 11-летних детей. Некоторых учеников особенно пугает буква X, которая используется для обозначения неизвестного угла. Но можно сделать эту задачу куда менее страшной, если дать углу какое-то осмысленное имя вместо загадочного X; к примеру, можно назвать его Кляксой или Камешком.

Ш. P = 275; Q = 75

Перейти на страницу:

Похожие книги

Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Жизненными циклами всего на свете – от растений и животных до городов, в которых мы живем, – управляют универсальные скрытые законы. Об этих законах – законах масштабирования – рассказывает один из самых авторитетных ученых нашего времени, чьи исследования совершили переворот в науке. «Эта книга – об объединенной и объединяющей системе концепций, которая позволила бы подступиться к некоторым из крупнейших задач и вопросов, над которыми мы бьемся сегодня, от стремительной урбанизации, роста населения и глобальной устойчивости до понимания природы рака, обмена веществ и причин старения и смерти. О замечательном сходстве между принципами действия городов, компаний и наших собственных тел и о том, почему все они представляют собой вариации одной общей темы, а их организация, структура и динамика с поразительной систематичностью проявляют сходные черты. Общим для всех них является то, что все они, будь то молекулы, клетки или люди, – чрезвычайно сложные системы, состоящие из огромного числа индивидуальных компонентов, взаимосвязанных, взаимодействующих и развивающихся с использованием сетевых структур, существующих на нескольких разных пространственных и временных масштабах…» Джеффри Уэст

Джеффри Уэст

Деловая литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Финансы и бизнес
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии