«Ого, это похоже на алгебру», – сказал один папа. Безусловно, это раннее знакомство детей с тем, что позже они будут решать при помощи системы уравнений. Многие дети обязательно с испугом скажут себе, что они могут найти пример, в котором P на 200 больше, чем Q, и пример, в котором P + Q = 350, но не в состоянии отыскать такого, в котором одновременно верны оба утверждения. Как обычно, все сводится к старому знакомому методу проб и ошибок. Возьмите P = 200, Q = 0 – сумма получится 200, то есть слишком мало. Поэтому пробуем P = 300, Q = 100 – в сумме 400, то есть чересчур много. Еще через пару шагов придем к верному решению, то есть к числам 275 и 75. (Может показаться странным, что эти числа заканчиваются на 5, хотя все числа в условии задачи заканчиваются на нуль.)
Щ. 63 × 65
Из всех задач теста именно эта вызвала, пожалуй, самую бурную реакцию. Одна из мам сказала: «Я чувствую себя идиоткой! При первом взгляде на эту задачу я подумала просто: "Нет, я не могу этого сделать"». Тем не менее она, как и большинство мам и пап, сумела в конце концов получить верный ответ. Правда, времени потребовалось немало.
Родители здесь воспользовались той самой стратегией, которая ожидается также и от детей, а именно методом проб и ошибок. Это означает, что начать можно с любых двух чисел на выбор, скажем, с варианта 58 × 67, и посмотреть, насколько близко вы окажетесь к ответу. Но такой подход срабатывает только при методической работе, без нее вы не сможете «попасть в цель».
Решение математических задач может быть похоже на взламывание шифра, и эта – прекрасный тому пример. В задаче скрывается тайна, и вы, как детектив Коломбо из известного сериала, получаете кое-какие улики и далее ищете дополнительную информацию. И хотите верьте, хотите нет, подсказок здесь множество. Во-первых, тот факт, что число 4095 – нечетное. Если при перемножении двух чисел ответ получается нечетный, то и оба перемножаемых числа должны быть нечетными. (Надо сказать, это было откровением для одной умненькой учительницы младших классов, с которой нам довелось беседовать, – она никогда не сталкивалась с тем, что четное число при умножении на любое другое целое число обязательно дает четный результат, хотя, стоило ей задуматься, как это стало очевидным.)
Поэтому мы немедленно понимаем, что два числа, о которых идет речь, должны браться из набора 51, 53, 55, 57, 59, 61, 63, 65, 67 и 69. Однако число возможных вариантов еще снижается, если обратить внимание на то, что произведение заканчивается на 5; значит, по крайней мере один из сомножителей тоже заканчивается на 5. Следовательно, одно из чисел должно быть 55 или 65. Быстрая проверка на калькуляторе показывает, что 4095 не делится нацело на 55, зато 4095: 65 = 63, что дает нам второе число.
На самом деле математики, натренированные в решении такого рода примеров, смогут ответить на вопрос без всякого калькулятора. Если вам интересно (а может, и нет!), как они это сделают, читайте дальше. Во-первых, математик посмотрел бы на простые множители числа 4095. Он понял бы, что поскольку число 4095 – нечетное, то оба сомножителя тоже должны быть нечетные. Он сразу же заметил бы, что 4095 делится на 5, а значит, один из сомножителей должен равняться 55 или 65. Затем он заметил бы, что 4095 не делится на 11, то есть число 55 не может быть одним из делителей. Единственным вариантом остается 65. Наконец, математик заметил бы, что 4095 делится на 9, то есть второй делитель должен быть нечетным числом, кратным 9 и лежащим между 50 и 70. Это значит, что второй множитель равен 63.
Не тревожьтесь, если это краткое объяснение не пролило свет на проблему; главный его смысл в том, что при наличии достаточных математических знаний можно найти приемы, которые позволят вам щелкать сложные на первый взгляд примеры как орешки.
Ничто из перечисленного не
Э.