Читаем Математика для взрослых полностью

Будь участок квадратным, Бэтчап приобрел бы обещанные 400 квадратных метров земли. Однако после изменения формы участка его площадь уменьшилась на x2. И чем больше значение x, тем больше земли теряет Бэтчап. (Помните, буква x обозначает, насколько стороны длиннее/короче одна другой.) Если участок на 5 метров длиннее в одном направлении и на 5 метров короче в другом, тогда x = 5. Мы можем вычислить площадь такого участка двумя способами. Во-первых, взяв полученный ранее ответ 400 − x2 и подставив вместо x число 5. Площадь составит 400 − 52, то есть 400 − 25 = 375. Во-вторых, просто перемножив длины сторон прямоугольника. В северном направлении это 20 − 5 = 15, а в восточном — 20 + 5 = 25. Тогда площадь равна 15 × 25 = 375. Оба ответа совпадают, стало быть, алгебра работает как надо!

Разность квадратов

Допустим, у вас есть квадратный блок почтовых марок размером 6 × 6. Кто-то оторвал от него несколько марок, оставив вам квадрат 4 × 4. Сколько марок забрали?

Нам нужно вычислить 62 − 42. Вычитание квадрата одного числа из квадрата другого называется разностью квадратов. В данном случае все просто, поскольку числа небольшие. Получаем 36 − 16 = 20. Однако есть более быстрый способ подсчета, который подходит для квадратов любых чисел.

Разность квадратов двух чисел равняется сумме этих чисел, умноженной на их разность.

Звучит довольно странно, однако вот что это означает: чтобы вычислить 62 − 42, сначала нужно узнать сумму двух чисел: 6 + 4 = 10. Кроме того, понадобится их разность: 6 − 4 = 2. Теперь умножаем сумму на разность: 10 × 2 = 20. Такой же ответ мы получили раньше.

Вместо того чтобы рассуждать об этом на словах, проще записать правило разности квадратов в виде алгебраического уравнения. Обозначим буквой a первое число и буквой b второе, тогда наше правило будет иметь следующий вид: a2 – b2 = (a + b)(a – b)

Мы уже наблюдали, как это работает для a = 6 и b = 4, однако данное уравнение подходит для любых a и b. Если вы думаете, что разность квадратов вам никогда не пригодится в жизни, представьте, что a = 20 и b = x, и посмотрите на уравнения из задачки о земельной афере. Там у нас (20 − x)(20 + x) = 400 − x2, тот же самый результат!

Объяснение загадки с тремя числами

Помните подраздел «Фокус с тремя числами», размещенный в начале книги? Там я объяснял, что какими бы ни были три последовательно идущих числа, если умножить большее из них на меньшее, результат всегда будет на единицу меньше второго числа, возведенного в квадрат. Например, возьмем 12, 13 и 14. Результат умножения 12 × 14 = 168, что на единицу меньше, чем 132 = 169.

Опять воспользуемся уравнением для разности квадратов, подставив вместо b единицу. Вот что получится: a2 – 12 = (a + 1)(a – 1)

Вспоминаем, что 12 = 1 × 1 = 1, поэтому выходит

a2 – 1 = (a + 1)(a – 1)

Теперь предположим, что a — второе из трех последовательно идущих чисел. Тогда (a + 1) будет наибольшим числом, а (a – 1) — наименьшим. Уравнение говорит нам, что если взять квадрат второго числа и вычесть из него единицу, то результат будет равен наибольшему числу, умноженному на наименьшее.

В случае с числами 12, 13 и 14 a = 13, но, разумеется, вместо 13 можно выбрать любое другое значение. Вот почему этот фокус применим к любым трем последовательно идущим числам.

Алгебра отлично подходит для разоблачения фокусов из серии «загадать любое число».

Как разрушить Вселенную

Помните, выше я предупреждал вас о такой вероятности? Если вы дочитали до этого места, значит, усердно трудились и многое узнали, поэтому будет совершенно справедливо вознаградить вас за старания неограниченными космическими суперспособностями...

Начнем с двух чисел, a и b, которые волей случая оказались равны: a = b

Будем обращаться с обеими частями этого уравнения совершенно одинаковым образом. Смотрите внимательно...

Умножаем обе части на a: a2 = ab

Вычитаем из обеих частей b2: a2 — b2 = ab — b2

С левой стороны уравнения получается разность квадратов, поэтому, как мы знаем, a2 − b2 = (a + b)(a – b). С правой стороны выходит ab − b2, где оба элемента делятся на b, стало быть, это выражение можно записать как b(a − b). Все эти действия допустимы и абсолютно корректны.

Таким образом, получаем (a + b)(a — b) = b(a — b)

Теперь разделим обе части на (a b) и получим (a + b) = b Перед скобками множителя нет, а значит, их можно просто убрать

a + b = b

Переносим +b в другую часть уравнения, меняя знак:

a = b – b

И вот итог: a = 0

Теперь вспоминаем, что a и b могут быть любыми числами, следовательно, мы только что доказали, что любое число равно нулю. То есть получается, что любые измерения времени, пространства или веса несущественны: прощай, Вселенная!

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
Империи Древнего Китая. От Цинь к Хань. Великая смена династий
Империи Древнего Китая. От Цинь к Хань. Великая смена династий

Книга американского исследователя Марка Эдварда Льюиса посвящена истории Древнего Китая в имперский период правления могущественных династий Цинь и Хань. Историк рассказывает об особой роли императора Цинь Шихуана, объединившего в 221 г. до н. э. разрозненные земли Китая, и формировании единой нации в эпоху расцвета династии Хань. Автор анализирует географические особенности Великой Китайской равнины, повлиявшие на характер этой восточной цивилизации, рассказывает о жизни в городах и сельской местности, исследует религиозные воззрения и искусство, а также систему правосудия и семейный уклад древних китайцев. Авторитетный китаист дает всестороннюю характеристику эпохи правления династий Цинь и Хань в истории Поднебесной, когда была заложена основа могущества современного Китая.

Марк Эдвард Льюис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература