Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

Зная ковариацию и стандартные отклонения, мы можем рассчитать коэффици­ент линейной корреляции:

Отметьте, что ковариация ценной бумаги самой к себе является дисперсией, так как коэффициент линейной корреляции ценной бумаги самой к себе равен 1:

Теперь можно создать таблицу ковариаций для нашего примера с четырьмя инве­стиционными альтернативами:


ТILS
Т0,1- 0,02370,010
I- 0,02370,250,0790
L0,010,0790,40
S0000


Мы собрали необходимую параметрическую информацию и теперь попытаемся сформулировать основную проблему. Во-первых, сумма весов ценных бумаг, со­ставляющих портфель, должна быть равна 1, так как операции ведутся на денеж­ном счете, и каждая ценная бумага полностью оплачена:

где N == число ценных бумаг, составляющих портфель;

Х = процентный вес ценной бумаги L

Важно отметить, что в уравнении (6.04) каждое значение Х должно быть неотрица­тельным числом.

Следующее равенство относится к ожидаемой прибыли всего портфеля — это Е в теории Е — V. Ожидаемая прибыль портфеля является суммой прибылей его компонентов, умноженных на соответствующие веса:

где Е = ожидаемая прибыль портфеля;

N = число ценных бумаг, составляющих портфель;

Xi = процентный вес ценной бумаги i;

Ui= ожидаемая прибыль ценной бумаги i. И наконец, мы подошли к параметру V, т. е дисперсии ожидаемых прибылей:

Нашей целью является поиск значений Х (причем их сумма равна единице), ко­торые дают наименьшее значение V для определенного значения Е. Максимизи­ровать (или минимизировать) функцию Н(Х, Y) при наличии условия или огра­ничения G(X, Y) можно с помощью метода Лагранжа. Для этого зададим функцию Лагранжа F(X, Y, L):

(6.07) F(X,Y,L) = H(X,Y) + L * G(X,Y)

Обратите внимание на форму уравнения (6.07). Новая функция F(X,Y,L) равна множителю Лагранжа L (его значение мы пока не знаем), умноженному на огра­ничительную функцию G(X,Y), плюс первоначальная функция H(X,Y), экстре­мум которой мы и хотим найти.

Решение этой системы из трех уравнений даст точки (X1Y1) относительного экстремума:

FxX,Y,L) = О Fy(X,Y,L) = О FL(X,Y,L) = О

Допустим, мы хотим максимизировать произведение двух чисел при условии, что их сумма равна 20. Пусть Х и Y два числа. Таким образом, H(X,Y) = Х * Y является функцией, которая должна быть максимизирована при нали­чии ограничительной функции G(X,Y) = Х + Y - 20 = 0. Зададим функцию Лагранжа:

F(X,Y,L) = Х * Y + L * (X + Y- 20) Fx(X,Y,L)=Y+L Fy(X,Y,L)=X+L FL(X,Y,L)=

X +Y-20

Теперь приравняем F^(X,Y,L) и Fy(X,Y,L) нулю и решим каждое из них для полу­чения L:

Y+L=0 Y=-L и

X+L=0 X=-L

Теперь, приняв FL(X,Y,L) = 0, мы получим Х + Y - 20 = 0. Наконец, заме­ним Х и Y эквивалентными выражениями, содержащими L:

(-L) + (-L) - 20 = О 2 * -L - 20 L=-10

Так как Y = -L, то Y = 10 и Х = 10. Максимальное произведение: 10*10= 100.

Метод множителей Лагранжа был продемонстрирован для двух переменных и одной 01раничительной функции. Метод можно также применять, когда есть бо­лее чем две переменные и более чем одна ограничительная функция. Далее для примера следует форма для поиска экстремума, когда есть три переменные и две ограничительные функции:

В этом случае, чтобы определить точки относительных экстремумов, вам надо ре­шить систему из пяти уравнений с пятью неизвестными. Позже мы покажем, как это сделать.

Сформулируем проблему несколько иначе: необходимо минимизировать V, т.е. дисперсию всего портфеля, с учетом двух следующих ограничений:

где N= число ценных бумаг, составляющих портфель;

Е = ожидаемая прибыль портфеля;

Х = процентный вес ценной бумаги i;

U. = ожидаемая прибыль ценной бумаги i.

Минимизация ограниченной функции многих переменных может быть проведе­на путем введения множителей Лагранжа и частного дифференцирования по каждой переменной. Поэтому мы сформулируем поставленную задачу в терминах функции Лагранжа, которую назовем Т:

где V= дисперсия ожидаемых прибылей портфеля из уравнения (6.06);

N = число ценных бумаг, составляющих портфель;

Е = ожидаемая прибыль портфеля;

X. = процентный вес ценной бумаги i;

U. = ожидаемая прибыль ценной бумаги i;

L, = первый множитель Лагранжа;

L = второй множитель Лагранжа.

Мы получим портфель с минимальной дисперсией (т.е. минимальным риском), приравняв к нулю частные производные функции Т по всем переменньм.

Давайте снова вернемся к нашим четырем инвестициям: Toxico, Incubeast Corp., LA Garb и сберегательному счету. Если мы возьмем первую частную произ­водную Т по Х1, то получим:

Приравняв это выражение нулю и разделив обе части уравнения на 2, получим:

Таким же образом:

Таким образом, проблему минимизации V при данном Е для портфеля с N компонентами можно решить с помощью системы N + 2 уравнений с N + 2 неиз­вестными. Для случая с четырьмя компонентами обобщенная форма будет иметь следующий вид:



где Е = ожидаемая прибыль портфеля;

Хi = процентный вес ценной бумаги i;

Ui = ожидаемая прибыль по ценной бумаге i;

COV А, Б = ковариация между ценными бумагами А и Б;

L1 = первый множитель Лагранжа;

12 = второй множитель Лагранжа.

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература