Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

После того как найдена единичная матрица, следует интерпретировать получен­ные результаты. В данном случае при наличии входных данных об ожидаемых прибылях и дисперсии прибылей по всем рассматриваемым компонентам, при наличии коэффициентов линейной корреляции каждой пары компонентов и ожидаемой отдаче 14% наше решение является оптимальным. Слово «оптималь­ный» означает, что полученное решение дает самую низкую дисперсию при ожи­даемой прибыли 14%. Мы можем определить это значение дисперсии, но сначала интерпретируем результаты.

Первые четыре значения, от X1 до Х4 дают нам веса, т.е. доли инвестируемых средств, для получения оптимального портфеля с 14%-ой ожидаемой прибылью. Нам следует инвестировать 12,391% в Toxico, 12,787% в Incubeast, 38,407% в LA Garb и 36,424% в сберегательный счет. Если мы хотим инвестировать 50 000 дол­ларов, то получим:


АкцияПроцент(* 50000 =) сумма инвестиций
Toxico0,12391$6195,50
Incubeast0,12787$6393,50
LA Garb0,38407$19 203,50
Сберегательный счет0,36424$18212,00


Таким образом, в Incubeast мы бы инвестировали 6393,50 доллара. Теперь допус­тим, что Incubeast котируется по цене 20 долларов за акцию, т.е. следует купить 319,675 акции (6393,5 / 20). На самом деле мы не можем купить дробное число акций, поэтому купим либо 319, либо 320 акций. Следует также отметить, что не­большой лот из 19 или 20 акций, остающийся после покупки первых 300 акций, будет стоить дороже. Нестандартные, малые лоты обычно стоят несколько доро­же, поэтому мы переплатим за 19 или 20 акций, а это коснется ожидаемой прибы­ли по нашей позиции в Incubeast и в свою очередь затронет оптимальную комби­нацию портфеля. В некоторых случаях следует ограничиться только стандартным лотом (в на­шем случае — это 300 акций). Как видите, необходимо учитывать некоторый коэффициент ухудшения. Мы можем определить оптимальный портфель с точ­ностью до дробной части акции, но реальная торговля все равно внесет свои коррективы. Естественно, чем больше ваш счет, тем ближе будет реальный портфель к тео­ретическому. Допустим, вместо 50 000 долларов вы оперируете пятью миллиона­ми долларов. Вы хотите инвестировать 12,787% в Incubeast (если речь идет только об этих четырех инвестиционных альтернативах) и поэтому будете инвестиро­вать 5 000 000*0,12787 =$639 350. При цене 20 долларов за акцию вы бы ку­пили 639350/20=31967,5 акций. Учитывая круглый лот, вы купите 31900 акций, отклоняясь от оптимального значения примерно на 0,2%. Когда для инве­стирования у вас есть только 50 000 долларов, вы купите 300 акций вместо опти­мального количества 319,675 и таким образом отклонитесь от оптимального зна­чения примерно на 6,5%.

Подставим значения в уравнение (6.06a) (стр. 281):

Таким образом, при Е = 0,14 самое низкое значение V = 0,0725872809.

Если мы захотим протестировать значение Е = 0,18, то снова начнем с рас­ширенной матрицы, только на этот раз правая верхняя ячейка будет равна 0.18.

XiXjCOVi, j
0,12391*0,12391*0,10,0015353688
0,12391*0,12787*-0,0237-0,0003755116
0,12391*0,38407*0,010,0004759011
0,12391*0,36424*00
0,12787*0,12391*-0,0237-0,0003755116
0,12787*0,12787*0,250,0040876842
0,12787*0,38407*0,0790,0038797714
0,12787*0,36424*00
0,38407*0,12391*0,010,0004759011
0,38407*0,12787*0,0790,0038797714
0,38407*0,38407*0,40,059003906
0,38407*0,36424*00
0,36424*0,12391*00
0,36424*0,12787*00
0,36424*0,38407*00
0,36424*0,36424*00
0,0725872809


С помощью построчных операций получим единичную матрицу:

На этот раз в четвертой ячейке столбца ответов мы получили отрицательный ре­зультат. Это означает, что нам следует инвестировать отрицательную сумму в размере 9,81% капитала в сберегательный счет. Чтобы решить проблему отрица­тельного Xi (т.е. когда значение на пересечении строки i и крайнего правого столбца меньшее или равно нулю), мы должны удалить из первоначальной рас­ширенной матрицы строку i + 2 и столбец i и решить задачу для новой расши­ренной матрицы. Если значения последних двух строк крайнего правого столб­ца меньше или равны нулю, нам не о чем беспокоиться, поскольку они соответ­ствуют множителям Лагранжа и могут принимать отрицательные значения. Так как отрицательное значение переменной соответствует отрицательному весу четвертого компонента, мы удалим из первоначальной расширенной матрицы четвертый столбец и шестую строку. Затем используем построчные операции для проведения элементарных преобразований, чтобы получить единичную матрицу:

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература