Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

Следующая аксиома, касающаяся торговли фиксированной долей, относится к максимизации текущего события, как будто оно должно быть осуществлено бес­конечное количество раз в будущем. Мы определили, что для процесса независи­мых испытаний вы должны всегда использовать оптимальное и постоянное f, но при наличии зависимости оптимальное f уже не будет постоянной величиной.

Допустим, в нашей системе существует зависимость, в соответствии с которой подобное порождает подобное, а доверительная граница достаточно высока. Для на­глядности мы будем использовать уже знакомую нам игру 2:1. Система показывает, что если последняя игра выигрышная, то следующая игра имеет 55% шанс выигры­ша. Если последняя игра проигрышная, то следующая игра имеет 45% шанс проиг­рыша. Таким образом, если последняя игра была выигрышная, то исходя из формулы Келли, уравнение (1.10) для поиска оптимального f (так как результаты игры имеют бернуллиево распределение), получим:

(1.10) f =((2+1)* 0,55-1)/2 =(3*0,55- 1)/2=0,65/2=0,325

После проигрышной игры наше оптимальное f равно:

f =((2+1)* 0,45-1)/2 =(3*0,45-1) /2 =0,35/2 =0,175

Разделив наибольший проигрыш системы (т.е. -1) на отрицательные оптималь­ные f, мы получим 1 ставку на каждые 3,076923077 единицы на счете после выиг­рыша и 1 ставку на каждые 5,714285714 единицы на счете после проигрыша. Та­ким образом мы максимизируем рост в долгосрочной перспективе.

Отметьте, что в этом примере ставки как после выигрышей, так и после проигрышей все еще имеют положительное математическое ожидание. Что произойдет, если после проигрыша вероятность выигрыша будет равна 0,3? В таком случае математическое ожидание имеет отрицательное значение и оп­тимального f не существует, таким образом, вам не следует использовать эту игру:

(1.03) М0=(0,3*2)+(0,7*-1) =0,6-0,7 =-0,1

В этом случае следует использовать оптимальное количество только после выиг­рыша и не торговать после проигрыша. Если зависимость действительно суще­ствует, вы должны изолировать сделки рыночной системы, основанные на зави­симости, и обращаться с изолированными сделками как с отдельными рыноч­ными системами. Принцип, состоящий в том, что асимптотический рост максимизируется, когда каждая игра осуществляется бесконечное количество раз в будущем, также применим к нескольким одновременным играм (или торговле портфелем).

Рассмотрим две системы ставок, А и Б. Обе имеют отношение выигрыша к проигрышу 2:1, и обе выигрывают 50% времени. Допустим, что коэффициент корреляции между двумя системами равен 0. Оптимальные f для обеих систем (при раздельной, а не одновременной торговле) составляют 0,25 (т.е. одна ставка на каждые 4 единицы на балансе). Оптимальные f при одновременной торговле в обеих системах составляют 0,23 (т.е. 1 ставка на каждые 4,347826087 единицы на балансе счета). В случае, когда система Б торгует только две трети времени, неко­торые трейдеры разорятся, если обе системы не будут торговать одновременно. Первая последовательность показана при начальном комбинированном счете в 1000 единиц, и для каждой системы оптимальное f соответствует 1 ставке на каж­дые 4,347826087 единицы:


АБКомбинированный счет
1 000,00
-1- 230,00770,00
2354,20-1-177,10947,10
-1-217,832435,671 164,93
2535,871 700,80
-1-391,18-1-391,18918,43
2422,482422,481 763,39


Рассмотрим теперь ситуацию, когда А торгует отдельно от Б. В этом случае мы де­лаем 1 ставку на каждые 4 единицы на комбинированном счете для системы А (так как это оптимальное f для одной игры). В игре с одновременными ставками мы все равно ставим 1 единицу на каждые 4,347826087 единицы на балансе счета как для А, так и для Б. Отметьте, что независимо от того, отдельная это ставка или од­новременная ставка по А и Б, мы применяем то оптимальное f, которое увеличи­вает доход при бесконечном повторении ставок.

АБКомбинированный счет
1 000,00
-1- 250,00750,00
2345,20-1-172,50922,50
-1-212,172424,351 134,67
2567,341 702,01
-1-391,46-1-391,46919,09
2422,782422,781 764,65


Как видите, с помощью этого метода мы получаем небольшой выигрыш, и чем больше сделок проходит, тем больше этот выигрыш. Тот же принцип применяется к торговле портфелем, где не все компоненты портфеля находятся на рынке в определенный момент времени. Вам следует торговать на оптималь­ных уровнях для комбинации компонентов (или одного компонента), чтобы получить в итоге оптимальный рост, как будто этой комбинацией компонентов (или одним компонентом) придется торговать бесконечное количество раз в будущем.

Потеря эффективности при одновременных ставках или торговле портфелем

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература