Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

Таблица VIII
Система АСистема Б
Сделка P&LСделкаP&LСчет
Оптимальное f соответствует 1 единице на каждые 0,00 на балансе (показана 1 единица на каждые 4):
100,00
-1-12,50225,00112,50
228,13-1-14,06126,56
-1-15,82231,64142,38
235,60-1-17,80160,18


Из этого раздела можно сделать два вывода. Первый состоит в том, что при од­новременных ставках или торговле портфелем существует небольшая потеря эффективности, вызванная невозможностью рекапитализировать счет после каждой отдельной игры. Второй заключается в том, что комбинирование ры­ночных систем, при условии, что они имеют положительные математические ожидания (даже если они положительно коррелированы), никогда не уменьшит ваш общий рост за определенный период времени. Однако когда вы продолжае­те добавлять все больше и больше рыночных систем, эффективность уменьша­ется. Если у вас есть, скажем, 10 рыночных систем, и все они одновременно не­сут убытки, совокупный убыток может уничтожить весь счет, так как вы не смо­жете уменьшить размер каждого проигрыша, как в случае последовательных сделок. Таким образом, при добавлении новой рыночной системы в портфель польза будет только в двух случаях: когда рыночная система имеет коэффициент корре­ляции меньше 1 и положительное математическое ожидание или же когда систе­ма имеет отрицательное ожидание, но достаточно низкую корреляцию с другими составляющими портфеля, чтобы компенсировать отрицательное ожидание. Каждая добавленная рыночная система вносит постепенно уменьшающийся вклад в среднее геометрическое. То есть каждая новая рыночная система улучшает среднее геометрическое все в меньшей и меньшей степени. Более того, когда вы добавляете новую рыночную систему, теряется общая эф­фективность из-за одновременных, а не последовательных результатов. В неко­торой точке добавление еще одной рыночной системы принесет больше вреда, чем пользы.

Время, необходимое для достижения определенной цели, и проблема дробного f

Допустим, мы знаем среднее арифметическое HPR и среднее геометрическое HPR для данной системы. Мы можем определить стандартное отклонение HPR из формулы для расчета оценочного среднего геометрического:

где AHPR = среднее арифметическое HPR;

SD = стандартное отклонение значений HPR.

Поэтому мы можем рассчитать стандартное отклонение SD следующим образом:

Возвращаясь к нашей игре с броском монеты 2:1, где математическое ожида­ние 0,50 долларов и оптимальное f- ставка в 1 доллар на каждые 4 доллара на сче­те, мы получим среднее геометрическое 1,06066. Для определения среднего ариф­метического HPR можно использовать уравнение (2.05):

где AHPR = среднее арифметическое HPR;

МО = арифметическое математическое ожидание в единицах;

f$= наибольший проигрыш/-f

f = оптимальное f (от 0 до 1).

Таким образом, среднее арифметическое HPR равно:

AHPR =1+(0,5/(-1/-0,25)) =1+(0,5/4) =1+0,125 =1,125

Теперь, так как у нас есть AHPR и EGM, мы можем использовать уравнение (2.04) для определения оценочного стандартного отклонения HPR:

=1,125 ^2- 1,06066 ^62


= 1,265625-1,124999636 =0,140625364

Таким образом, SD ^ 2, то есть дисперсия HPR, равна 0,140625364. Извлекая квад­ратный корень из этой суммы, мы получаем стандартное отклонение HPR =0,140625364 ^(1/2) =0,3750004853. Следует отметить, что это оце­ночное стандартное отклонение, так как при его расчете используется оце­ночное среднее геометрическое. Это не совсем точный расчет, но вполне приемлемый для наших целей. Предположим, мы хотим преобразовать зна­чения для стандартного отклонения (или дисперсии), арифметического и среднего геометрического HPR, чтобы отражать торговлю не оптимальным f, а некоторой его частью. Эти преобразования даны далее:

(2.07) FSD = SD * FRAC

(2.08) FGHPR= (FAHPR ^ 2 - FSD ^ 2) А^(1/2),

где FRAC = используемая дробная часть оптимального f;

АН PR= среднее арифметическое HPR при оптимальном f;

SD = стандартное отклонение HPR при оптимальном f;

FAHPR== среднее арифметическое HPR при дробном f;

FSD = стандартное отклонение HPR при дробном f;

FGHPR = среднее геометрическое HPR при дробном f.

Например, мы хотим посмотреть, какие значения приняли бы FAHPR, FGHPR и FSD в игре с броском монеты 2:1 при половине оптимального f (FRAC = 0,5). Мы знаем, что AHPR= 1,125 и SD = 0,3750004853. Таким образом:

=(1,125- 1)*0,5+ 1 =0,125* 0,5 + 1 = 0,0625 + 1 = 1,0625

(2.07) FSD = SD * FRAC

=0,3750004853*0,5 = 0,1875002427

= (1,0625 ^ 2 - 0,1875002427 ^2) ^ (1/2) = (1,12890625 - 0,03515634101) ^ (1/2) =1,093749909 ^ (1/2) = 1,04582499

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература