Читаем Многоликий солитон полностью

Точно так же можно вычислить сумму потенциальных энергий пружин k (yn+1 - yn)2/2, хотя вычисление немного сложнее. Оставив это вычисление читателю в качестве упражнения, заметим, что результат получится очень простой: потенциальная энергия U равна кинетической. Это верно для всех бегущих синусоидальных волн, в которых частицы среды качаются как линейные маятники. На самом деле для бегущей синусоидальной волны можно доказать и большее: кинетическая и потенциальная энергии равны не только в среднем *), но и для каждого отдельного грузика в каждый момент времени. Для дискретной модели это верно приближенно, при достаточно большом значении N = λ. В непрерывном пределе это утверждение становится точным.

*) Имеется в виду усреднение по времени (за период) или по длине (на длине волны). Для бегущей волны эти средние равны.

В нормальных модах стоячей волны кинетическая и потенциальная энергии всей системы равны только в среднем по времени. Это можно проверить, воспользовавшись найденным нами раньше решением (5.7) (вспомните, что 2cos2(2ωMt) = 1 + соs(2ωMt), а среднее значение cos(2ωMt) за период равно нулю). В остальном энергия стоячей волны определяется точно так же, как и энергия бегущей волны. Разумеется, можно определить энергию периодических бегущих и стоячих волн произвольной формы, хотя простыми формулами этого не опишешь.

Полезно представить себе, как выглядит выражение для энергии волны в «непрерывном» пределе, когда из цепочки грузиков получается упругий стержень. Полная энергия волны в малом кусочке стержня длины Δх равна



Здесь первый член соответствует кинетической энергии грузика, а второй — потенциальной энергии пружинок. Суммируя вклады малых кусочков, можно найти полную энергию куска волны, группы волн или солитона. Если на частицы действует какая-то внешняя сила (электрическое поле, поле силы тяжести и т. д.), нужно добавить к ΔЕ соответствующую величину потенциальной энергии.

Как видим, энергия, запасенная в волне, определяется просто. Сложнее обстоит дело с переносом энергии волной, и об этой проблеме долго не утихали споры, отголоски которых докатились и до наших дней. Первое ясное решение задачи о переносе энергии в упругих средах дал Н. А. Умов в 1874 г. Однако его работа была опубликована отдельной брошюрой в Одессе и долгие годы оставалась незамеченной. Независимо от Умова английский физик Осборн Рейнольдс (1842—1912), наиболее известный своими работами по гидродинамике, рассмотрел под влиянием Рэлея вопрос о том, как переносится энергия волнами в жидкости (1877 г.). Он связал перенос энергии с давлением бегущей волны, вычислил это давление и показал, что энергия распространяется не с фазовой скоростью, а с групповой. Эта мысль была подхвачена Джоном Пойнтингом (1852—1914), который нашел уравнения переноса энергий электромагнитного поля. Из них, в частности, следовало, что электромагнитная волна также должна оказывать давление. Многим, в том числе и знаменитому Кельвину, показалось, что это доказывает несостоятельность теории Максвелла. Все разъяснилось лишь после опытов Лебедева. Для нас, знающих, что свет состоит из фотонов, представление о переносе энергии электромагнитным полем и о световом давлении кажется самоочевидным. Однако на языке теории волн, распространяющихся в среде, все выглядело сложнее, так как понятие об энергии, как и понятие о скорости, тоже заимствовано из теории частиц.

Перейти на страницу:

Все книги серии Библиотечка Квант

Похожие книги