Мы воспроизведем в упрощенном виде рассуждения Рэлея, приведенные в его книге «Теория звука», первой и одной из лучших книг по общей теории колебаний и волн **). Сначала предельно упростим задачу и рассмотрим две волны одинаковой амплитуды, но слегка различной длины, распространяющиеся в одном и том же направлении. Рэлей, естественно, рассматривает синусоидальные волны, а мы для наглядности заменим синусоиды пилообразными волнами. Сумма двух таких волн легко определяется графически, как это сделано на рис. 5.9. Мы видим довольно четко выраженную стайку волн с вершиной А
. Если обе волны, из которых образована эта стайка, распространяются с одной и той же скоростью, то вершина, разумеется, бежит с той же скоростью. Предположим теперь, что волны разной длины бегут с разной скоростью, т. е. имеется дисперсия. Пусть, например, v1 = v(λ1) v2 = v(λ2). Что мы увидим в этом случае? Нарисуем графики движения первой и второй волн (рис. 5.10). Нетрудно понять, что в момент t0 мы снова увидим стайку волн первоначальной формы, но с вершиной в точке x0. Как видно на рисунке, АВ = λ1, ВC = v1t0, откуда v1t0 - x0 = λ1. Назовем u = x0/t0 групповой скоростью и заметим, что (λ2 - λ1)/t0 = v2 - v1 (это тоже ясно видно, из рисунка).**) Современники Рэлея не сумели вполне оценить, что с появлением этой книги зародилось общее учение о колебаниях и волнах. Даже Гельмгольц, которому книга очень понравилась, считал, что это просто очень хорошая книга по акустике.
Учитывая, что разности длин волн, Δλ = λ2
- λ1, и разности скоростей, Δv = v2 - v1, малы, легко понять, что
где мы заменили v
1 и λ1 на среднюю скорость v = ½(v1 + v2) и среднюю длину волны λ = ½(λ1 + λ2). Это и есть соотношение Рэлея, связывающее групповую скорость со скоростью гармонической волны (последнюю обычно называют фазовой скоростью). Смысл этой простой формулы состоит в том, что скорость группы, в которой средняя длина волн входящих в нее гармоник близка к λ, определяется производной фазовой скорости v(λ) по λ при значении λ, равном средней длине волны группы. Групповую скорость легко определять по графику функции v
(λ) (рис. 5.8). Пусть средняя длина волны группы равна λ2. Проведем из точки O2 касательную до пересечения с осью у. Точка пересечения и дает групповую скорость, которая в этом случае меньше фазовой. Упражнение: докажите, что при λ λмин из формул (5.22) и (5.23) следует, что u v/2. Попробуйте проверить это соотношение наблюдениями. Точно такое построение можно выполнить и для длин волн, меньших λмин. При λ = λмин фазовая и групповая скорости, как видно из рисунка, совпадают.Нетрудно убедиться, что для изученных нами волн на воде групповая скорость u
всегда положительна, т. е. группы бегут в ту же сторону, что и волны. Однако если наклон графика v(λ) достаточно большой, то групповая скорость могла бы стать отрицательной. В этом нет ничего сверхъестественного или парадоксального. Просто основная волна длины λ (в радиотехнике ее называют несущей) бежит направо, а вершина огибающей ее кривой, обозначенной на рис. 5.9 штриховой линией (в радиотехнике ее называют модулирующей), бежит налево. Это произойдет, если при λ = λ2 будет выполнено условие tg α v(λ2)/λ2 (см. ΔO2O'2u(λ2) на рис. 5.8). Так как tg α = v'(λ2), то заключаем, что групповая скорость отрицательна, если группа образована волнами со средней длиной, удовлетворяющей условию v'(λ) v (λ)/λ. Для длинных гравитационных волн на воде все это мог бы понять еще Ньютон, но реально понадобилось двести лет, чтобы выяснить, как много содержит в себе простое утверждение «скорость волн пропорциональна корню квадратному из их длин». Ньютон, считавший свет потоком частиц, не мог связать изученную им дисперсию света с зависимостью скорости волн на воде от их длины. Лишь через полтораста лет эта связь была замечена, и только к концу прошлого века стало окончательно ясно, что дисперсия, как и другие волновые явления (интерференция, дифракция), проявляется в любых волновых процессах. Понятие о дисперсии и групповой скорости получило после этого многочисленные применения в других областях физики — в оптике, радиофизике, квантовой теории и т. д. Тем не менее реальное использование понятия о групповой скорости и сегодня может вызвать трудности.