Этот пример демонстрирует силу предварительной оценки. Приор" - это название вероятности гипотезы, в данном случае вероятности того, что ваш друг подменил кубик. Если выполнить те же уравнения, но предположить, что вы играете с незнакомцем, который с такой же вероятностью может обмануть, как и нет (то есть вероятность обмана равна 0,5), результат будет другим: 0,019 против 0,0023 в пользу взвешенного кубика. Таким образом, сильная предварительная оценка может стать решающим фактором.
Другой термин - вероятность рулонов с учетом гипотезы - называется "вероятностью". Она показывает, насколько вероятно, что вы увидите то, что увидели, если ваша гипотезао мире окажется верной. Его роль в обратной вероятности отражает тот факт, что для определения причины любого следствия необходимо сначала узнать вероятные следствия каждой причины.
И вероятность, и предшествующее значение сами по себе неполны. Они представляют собой разные источники знаний: доказательства, которые вы имеете здесь и сейчас, и понимание, накопленное со временем. Когда они согласны, результат прост. В противном случае они оказывают свое влияние пропорционально своей уверенности. При отсутствии четких предварительных знаний вероятность доминирует над решением. Когда влияние предшественника сильно, он может заставить вас не верить собственным глазам. При наличии сильного предшествующего фактора в экстраординарные утверждения можно поверить только при наличии экстраординарных доказательств.
"Когда вы слышите стук копыт, думайте о лошадях, а не о зебрах" - этот совет часто дают студентам-медикам. Он призван напомнить им, что из двух заболеваний со схожими симптомами первым следует предположить более распространенное. Это также отличный пример правила обратной вероятности в действии. Независимо от того, находитесь ли вы в присутствии лошади или зебры, у вас одинаковые шансы услышать стук копыт; говоря техническим языком, вероятность в этих двух случаях одинакова. При таких неоднозначных данных решение принимается на основе предварительных знаний, и в данном случае предварительные знания говорят, что лошади встречаются чаще, а значит, это лучшее предположение.