Читаем Мозговой трест. 39 ведущих нейробиологов – о том, что мы знаем и чего не знаем о мозге полностью

** На протяжении нескольких десятилетий число транзисторов в интегральной схеме удваивалось каждые полтора-два года; в последнее время рост производительности от увеличения числа транзисторов замедлился — его ограничивают факторы, связанные с энергопотреблением и теплоотдачей.

Источники: John von Neumann, The Computer and the Brain (New Haven: Yale University Press, 2012); D. A. Patterson and J. L. Hennessy, Computer Organization and Design (Amsterdam: Elsevier, 2012)

Компьютер намного превосходит мозг в скорости базовых операций[119]. Сегодня любой персональный компьютер способен выполнять элементарные арифметические действия, такие как сложение, со скоростью 10 миллиардов операций в секунду. Скорость базовых операций в мозге мы можем оценить по базовым процессам, с помощью которых нейроны передают информацию и связываются друг с другом. Например, нейроны «возбуждаются» и генерируют биопотенциалы — электрические сигнальные импульсы (спайки), которые вырабатываются в теле клетки и передаются по длинным выростам, или аксонам, связывающим клетку со следующим нейроном цепи. Информация кодируется частотой и продолжительностью этих спайков. Наивысшая частота возбуждения нейронов оставляет около тысячи импульсов в секунду. Другой пример: нейроны передают информацию соседним клеткам в основном путем выделения химических нейромедиаторов в специализированные структуры терминалей аксона — синапсы, а соседние нейроны преобразуют поступающие нейромедиаторы в электрические сигналы в процессе синаптической передачи. Самая быстрая синаптическая передача длится около одной миллисекунды. Таким образом, спайки и синаптические передачи позволяют мозгу выполнять приблизительно тысячу базовых операций в секунду — это в 10 миллионов раз медленнее компьютера[120].

Компьютер многократно превосходит мозг и в точности выполнения базовых операций. Компьютер может представлять количественные значения (числа) с любой заданной точностью в пределах, определяемых разрядностью числа (количеством двоичных нулей и единиц). Например, 32-разрядное число имеет погрешность 1 на 232, или 1 на 4,2 миллиарда. Эмпирические данные свидетельствуют, что большинство числовых параметров в нервной системе (например, частота возбуждения нейронов, которая указывает на интенсивность стимула) из-за биологического шума имеют погрешность в пределах нескольких процентов, в лучшем случае 1 на 100, что в миллионы раз больше, чем у компьютера[121].

Однако вычисления, выполняемые мозгом, нельзя назвать ни медленными, ни неточными. Например, профессиональный теннисист способен всего за несколько сотен миллисекунд проследить за траекторией теннисного мяча, летящего со скоростью 250 километров в час, переместиться в оптимальную точку на корте, замахнуться и отбить подачу. Более того, его мозг потратит на решение этих задач (с помощью тела, которым он управляет) в десять раз меньше энергии, чем понадобилось бы персональному компьютеру. Как же ему это удается?

Важное различие между компьютером и мозгом связано с режимом обработки информации в системе. Компьютер решает задачи по большей части путем последовательных шагов. Иллюстрацией этого процесса может служить компьютерная программа, состоящая из набора команд. Для таких последовательных операций необходима высокая точность на каждом этапе, иначе ошибки будут накапливаться и усугубляться. Мозг также использует последовательные шаги для обработки информации. Например, при приеме теннисной подачи информация поступает от глаз сначала в головной, а затем и в спинной мозг, чтобы вызвать нужные сокращения мышц ног, корпуса и рук.

Но мозг также применяет массовую параллельную обработку, пользуясь преимуществом огромного количества нейронов и их соединений. Например, летящий теннисный мяч активизирует множество клеток в сетчатке глаза, фоторецепторов, которые преобразуют свет в электрические сигналы. Затем эти сигналы параллельно передаются сразу нескольким типам нейронов сетчатки. К тому времени как сгенерированные клетками фоторецепторов сигналы пройдут через 2–3 синаптических соединения в сетчатке глаза, информация о положении, направлении движения и скорости мяча уже будет извлечена параллельными нейронными цепями и передана в мозг. Точно так же моторная кора (область коры головного мозга, отвечающая за сознательное управление движениями) одновременно посылает команды мышцам ног, корпуса и рук, так что теннисист занимает оптимальную позицию и отбивает летящий мяч.

Перейти на страницу:

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука