Именно благодаря вулканизму в течение геологической истории появились внешние оболочки Земли — кора, гидросфера и атмосфера, то есть среда, где обитают живые организмы. Есть основание полагать, что вулканические процессы имеют большое значение в образовании внешних оболочек не только Земли, но и других планет.
На Земле около 800 действующих вулканов. Их общая средняя «производительность» не менее 3 млрд, т извергаемого вещества в год. Вещество это извергается из недр планеты в расплавленном состоянии с температурой, обычно превышающей 1000 °C, и представляет собой в основном так называемый пирокластический (в буквальном переводе с греческого «огненно-обломочный») материал: вулканические пеплы, шлаки, «бомбы». Сравнительно небольшая часть извергаемого материала приходится на лавовые потоки и лавовые купола. На поверхности Земли вулканические продукты вступают в круговорот геологических процессов, претерпевают глубокие изменения и служат исходным материалом для образования различных горных пород. Большинство геологов убеждено в том, что вулканизм в геологическом прошлом был более интенсивным, чем сейчас. Но даже если исходить из того, что его интенсивность была в среднем равна современной и составляла 3 млрд, т извергаемого материала в год, то окажется, что в течение всей геологической истории Земли, насчитывающей 4,5 млрд, лет, из недр Земли на ее поверхности должно было быть вынесено 13,5*1018
т вулканических продуктов. Эта цифра близка к массе земной коры всех континентов, вместе взятых. Если при этом учесть, что дно океанов сложено в основном вулканической породой — базальтом, а горы на дне океанов — это современные или древние вулканы, то можно прийти к такому выводу: в течение геологической истории Земли ее внешняя каменная оболочка — кора — постепенно сформировалась из вулканических продуктов. Но вулканы выносят на поверхность Земли не только раскаленный каменный силикатный материал, но и газы. Вулканический взрыв представляет собой мгновенное расширение магматического газа, вырвавшегося из земных недр, где он находился под большим давлением. Определив энергию взрыва, можно установить количество газа, высвобождающегося из магмы в процессе взрыва. Расчеты показывают, что в среднем оно составляет 3–4 % от веса извергаемого раскаленного пирокластического материала. Магматический газ — это прежде всего водяной пар. Но он содержит все компоненты, составляющие гидросферу и атмосферу нашей планеты. В течение геологической истории Земли из недр поступило столько летучих компонентов, что их вполне хватило бы для того, чтобы постепенно сформировать гидросферу и атмосферу планеты. Вся геохимическая эволюция внешних оболочек Земли — литосферы, гидросферы и атмосферы, — как и возникновение жизни, есть в конечном счете преобразование вулканических продуктов. Особенно сложную эволюцию претерпели за время геологической истории вулканические газы — от содержащих углерод компонентов через различного рода углеродистые соединения до органической основы жизни и от вулканических паров через морскую воду до крови, циркулирующей в сосудах высокоорганизованных живых существ.Многие научные исследования посвящены абиогенному синтезу предбиологических систем в лабораториях. В этих экспериментах ученые получали биологически важные соединения, пропуская через смесь водяного пара, водорода, аммиака и метана электрические разряды или прогоняя ту же смесь газов через раскаленный (с температурой 1000 °C) песок. А что представляет собой пеплово-газовый вулканический столб во время извержения? В нем содержатся все необходимые для образования предбиологических систем газовые компоненты: водяной пар, водород, аммиак, углеводороды, окись и двуокись углерода. В эту смесь входят также соединения серы и галоидные соединения. Газ составляет несколько весовых процентов от взвешенных в нем пепловых частиц. Последние — это вулканическое стекло и кристаллики минералов. Так как они обычно мелки, их общая суммарная поверхность колоссальна. Так, например, у пеплов, извергнутых в 1975–1976 гг. вулканом Толбачик на Камчатке, она составила около 100 000 000 км. Такая поверхность может служить ареной для реакций между газовыми компонентами, а минеральные частицы — катализаторами этих реакций.
Взрывающаяся магма имеет температуру более 1000 °C. Такая же температура у пепловых частиц в момент их образования. Однако из этой температурной зоны они удаляются со скоростью сотен метров в секунду. Так как пепловые частицы мелки, они очень быстро приобретают температуру окружающей среды. Поэтому сохраняются образовавшиеся на них биологически важные соединения.
Давление газа в момент взрыва обычно равно сотням атмосфер. В пеплово-газовом столбе оно быстро падает до атмосферного. Этот перепад давлений и служит причиной быстрого движения пепловых частиц и газа в пеплово-газовом столбе.
Взаимное трение и столкновение частиц пепла приводит к его электризации. В пеплово-газовой туче возникают электрические разряды, молнии. Длина их достигает нескольких километров.