Однако точка плавления жиров зависит не только от того, насыщенные ли они. Их углеродные цепочки имеют разную длину. Две очень длинные углеродные цепочки свяжутся друг с другом прочнее, чем короткие, поскольку будут взаимодействовать с бо́льшим количеством атомов, каждый из которых способен образовывать связи с атомами соседних углеродных цепочек. Таким образом, длинной цепочке потребуется больше тепла, чтобы расплавиться и порвать все связи. Теперь вы видите, что дело осложняется. Жиры с очень длинными насыщенными углеродными цепочками будут иметь самые высокие точки плавления, а жиры с короткими ненасыщенными углеродными цепочками будут плавиться при самых низких температурах. А как насчет комбинаций? Будет ли очень длинный, но ненасыщенный жир иметь бо́льшую энергию взаимодействия, чем короткая насыщенная цепочка? Трудно сказать. Все зависит от того, какое свойство победит. К счастью, для каждого жира вы всегда можете провести эксперимент на кухне и выяснить это.
Мы уже немало узнали о фазовых превращениях жиров. Это важный вопрос, потому что жиры во многих отношениях являются чем-то средним между простыми веществами – как вода – и другими сложными продуктами, например яйцами, которые содержат много различных видов молекул. Теоретически они работают точно так же, как вода. Однако в случае более сложных жиров, таких как масло какао, которое плавится медленно, мы начинаем наблюдать, что происходит с материалами, содержащими много различных типов молекул. Это, конечно, ближе к тому, как в целом работают фазовые превращения в пище. Масло какао – удивительное вещество, которое может использоваться в различных блюдах, придавая им поразительные свойства. Во врезке объясняется, как это связано со строением и фазовыми свойствами молекул жиров.
A:
Как и все жиры, масло какао состоит из молекул триглицеридов. Частица «три» говорит о трех цепочках жирных кислот, а «глицерид» – молекула, которая их скрепляет. В масле какао много различных типов цепочек жирных кислот, причем у каждой своя точка плавления. Цепочки жирных кислот могут располагаться по-разному. Существует шесть различных конформаций, которые мы называем фазами.B:
Фазы шоколада определяются различной кристаллической структурой, соответствующей различным расположениям молекул жирных кислот. Форма веток молекул позволяет триглицеридам располагаться по крайней мере двумя различными способами.C:
Как показано на этой диаграмме фаз шоколада, у него шесть кристаллических форм, которые наблюдаются в диапазоне между 18 °C и 36 °C. Пятая фаза – та, на которой получается лучший шоколад.Шоколад, который мы знаем сегодня, появился только в самом начале XIX века, однако какао-бобы употреблялись в пищу много тысяч лет. Шоколад изготавливают из какао-бобов, которые содержат твердое вещество какао и масло какао. Чтобы получить плитку шоколада, твердое вещество и масло в различных пропорциях смешивают с молоком и сахаром в зависимости от желаемой сладости и содержания молока. Затем смесь подвергается процессу, называемому темперированием, и только потом формуется.
Когда масло какао находится в твердом состоянии, жиры образуют кристаллы, однако располагаться жиры могут несколькими различными способами. Цель темперирования состоит в том, чтобы контролировать кристаллизацию, позволяя образоваться только желаемым кристаллам.
Для получения хорошего шоколада идеально подходит фаза кристаллизации V. Он не только красиво выглядит (блестит), но и имеет температуру плавления чуть ниже температуры тела. Это значит, что он останется твердым при большинстве условий хранения, но мы ощутим, как он тает во рту. Темперирование заключается в нагревании шоколада до такой температуры, при которой все кристаллы расплавятся (около 49 °C), а потом в охлаждении примерно до 27 °C. Забавно: температура плавления также является и температурой замерзания или превращения в твердое вещество. Итак, на этапе охлаждения начинают образовываться мелкие кристаллы типов IV и V. Затем смесь чуть подогревают, чтобы расплавить кристаллы типа IV, оставив только небольшое количество кристаллов типа V – для «посева». На этом этапе, когда шоколаду дадут окончательно остыть, он последует за «посевом», образуя исключительно кристаллы типа V.
Вы можете спросить, почему нельзя просто оставить смесь при 34 °C, а не охлаждать, а потом снова нагревать. Теоретически так можно было бы сделать, но минус в том, что тогда для кристаллизации потребуется очень-очень много времени. Поскольку температура – это способ описания энергии и движения молекул, кристаллы не образуются сразу же после достижения температуры плавления/отвердевания. Представьте себе температуру как точку, на которой жидкая и твердая формы равновероятны. Чем дальше температура окажется от точки превращения, тем больше молекул предпочтут одно состояние другому и тем быстрее пройдет превращение.