Совсем иначе складываются обстоятельства для постановки вопроса о создании беспилотного атомного самолета, не буксирующего никаких планеров. Такой самолет мог бы быть, несомненно, очень полезным для решения многих научных и технических задач. Его можно было бы успешно применить для сверхдальнего скоростного транспорта почты, газетных матриц, ценных грузов.
Можно было бы, например, на основе таких беспилотных атомных самолетов организовать почтово-грузовую экспрессную линию Москва — Антарктида. При реализации этой идеи, конечно, возникнут свои трудности. В особенности важным будет вопрос о том, чтобы в транспортируемых объектах не возникало опасной вторичной радиоактивности от воздействия нейтронного потока, выбрасываемого реактором.
Беспилотные самолеты, по данным иностранной печати, могли бы быть применены и для регулярного наблюдения за высокими слоями атмосферы, ретрансляции коротковолновых радиоволн, осуществления картографических аэрофотосъемок на значительных по длине маршрутах и для многих других целей, когда необходимо обеспечить длительное пребывание самолета в воздухе.
Во всяком случае, по мнению иностранных специалистов, несомненно одно: чем больше будет развиваться беспилотная авиация и чем дальше и дольше должны будут летать беспилотные самолеты, тем легче и эффективнее можно будет реализовать использование атомной энергии для целей авиации.
Кроме этой перспективы, следует иметь в виду и много других- вопросов, связанных с увеличением дальности и скорости полетов. В частности, заслуживают внимания следующие задачи[5]
.Представим себе, что необходимо обеспечить доставку на самолете срочного груза на расстояние около 15 000 километров. Допустим, что самолет будет лететь со скоростью, превышающей скорость звука. В этих условиях сила тяги двигателя будет равна примерно весу самолета. Таким образом, на пути в 15 000 километров на движение самолета будет затрачено 15 миллионов килограммометров работы на каждый килограмм общего веса самолета. Это очень большая энергия.
Сразу же возникает вопрос — нельзя ли найти способ снизить энергию, необходимую для движения?
Что будет, например, если подняться на высоту около 200 километров над поверхностью Земли, где практически нет воздуха, и лететь там на основе тех принципов, которые определяют движение искусственного спутника Земли? В этом случае для подъема 1 килограмма на 200 километров потребуется работа, равная приблизительно 200 тысячам килограммометров. Кроме того, перемещенному телу необходимо затем сообщить скорость 8000 метров в секунду.
Энергия, необходимая для того, чтобы сообщить одному килограмму такую скорость, равна примерно 3,2 миллиона килограммометров. Учитывая еще и определенную ранее работу подъема на высоту 200 км, получаем общую энергию, равную 3,4 миллиона килограммометров, вместо 15 миллионов килограммометров при полете самолета. Значит, космический полет оказывается приблизительно в 4,5 раза более экономичным, чем скоростной полег самолета, и вместе с тем примерно раз в 20 быстрее.
Таким образом, мы выигрываем при движении вне атмосферы сразу и в скорости, и в экономии энергии. Отчего это происходит? Ответ весьма прост: при переходе в космическое пространство мы освобождаемся от сопротивления воздуха. Воздух был в свое время опорой для первых полетов человека. Еще и сейчас он является практически единственной дорогой для полетов, если не считать крайне редких опытов с дальнобойными ракетами. Воздух, подобно руке заботливой матери, поддерживал человека при первых его попытках летать. Но полеты становятся все быстрее и быстрее, все выше и выше. И эта рука перестает уже оказывать нам помощь. В силу диалектики развития то, что было помощью, перерастает в помеху. И, вероятно, уже не столь далеко то время, когда человек на дальние расстояния будет летать не через воздух, а через космическое пространство.
При полете на очень большие расстояния космический полет был бы более экономичным в энергетическом отношении, что мы уже видели на примере, рассмотренном в начале статьи.
Впрочем, необходимо заметить следующее. Все сказанное здесь справедливо при космических полетах, совершаемых по окружностям, лежащим в плоскости, проходящей через центр тяжести земного шара. Если при космическом полете нужно изменить направление движения или его скорость, то это можно сделать только при помощи соответствующих реактивных двигателей, затрачивая некоторое дополнительное количество энергии. Это обусловлено тем, что в космическом пространстве нет такой среды, опираясь на которую можно маневрировать, к чему мы так привыкли, двигаясь в земной атмосфере…