Задача 92.
Эту задачу можно решать двумя способами: 1 способ состоит из таких операций: наливаем воду из крана в меньший сосуд, переливаем ее из меньшего сосуда в больший, выливаем воду в чайник из меньшего сосуда; 2 способ состоит из таких операций: наливаем воду из крана в больший сосуд, переливаем ее из большего сосуда в меньший, выливаем воду в чайник из большего сосуда.
Надо попробовать оба способа и выбрать наиболее короткий.
После этого операции повторяются. Итого первым способом можно выполнить требуемое за 10 переливаний.
1 способ
2 способ
Как видно, второй способ короче на одно переливание.
Заметим, что задачу можно существенно упростить, потребовав вылить в чайник 3 литра.
Задача 93.
Задача решается либо составлением системы, либо подбором. В 4 классе возможен только второй путь решения.
Из первого условия ясно, что число вещей может быть таким:
5, 8, 11….
Из второго условия ясно, что число вещей может быть таким:
13, 18….
Из третьего условия ясно, что число вещей может быть таким:
16, 23….
Напишем эти последовательности до получения совпадающих членов во всех трех:
5, 8, 11, 14, 17, 20, 23…
13, 18, 23….
16, 23…
Задача 94.
Задача 95.
Нужно заметить, что при умножении первого множителя на 8 получается трехзначное число, а при умножении на первую и на третью цифры получаются четырехзначные числа. Значит, второй множитель — это 989. Остается выяснить, какое число при умножении на 8 дает трехзначное произведение, а при умножении на 9 — четырехзначное. Это число, большее, чем 111, и меньшее, чем 125. В то же время известно, что при умножении на 9 оно дает число, оканчивающееся на 9. Значит, оно оканчивается на 1. Итак, это 121.
Задача 96.
Надо попросить детей придумать текст задачи на эту тему.
Задача 97.
Прибавим к искомому числу единицу. Тогда полученная сумма будет делиться без остатка и на 2, и на 3, и на 4, и на 5. Таким свойством обладает число, делящееся на 60. Поэтому полученная нами сумма равна 60, либо 120, либо 180, и т. д.
Задача 98.
Сумма нескольких первых нечетных чисел равна их числу, умноженному на себя: 1 = 1 · 1, 1 + 3 = 2 · 2, 1 + 3 + 5 = 3 · З и т. д. Это хорошо видно на чертеже:
Добавляя к квадрату очередное нечетное число, мы снова получаем квадрат.
Задача 99.
Надо попросить детей придумать текст задачи на эту тему.
Задача 100.