Читаем Нестандартные задачи по математике в 4 классе полностью

Задача 79.Задача из Древней Греции. Три грации имели по одинаковому числу плодов и встретили девять муз. Каждая из граций отдала каждой из муз по одинаковому числу плодов. После этого у всех муз и граций плодов стало поровну. Сколько плодов было у каждой грации до встречи, если у муз не было ни одного плода?


Минимальное число плодов, которое могла отдать грация каждой музе, равно 1. В этом случае каждая муза получила бы по три плода. Значит, у каждой музы и каждой грации в результате оказалось бы по три плода. Всего, таким образом, в задаче имелось 3 · 12 = 36 плодов. Поэтому у каждой грации первоначально имелось по 36 : 3 = 12 плодов.

Проверим полученное предположение. Если у каждой из 3 граций было по 12 плодов и если каждая грация дала каждой из 9 муз по одному плоду, то у каждой грации осталось по 3 плода, а у каждой музы стало тоже по 3 плода.

Однако, это решение не единственное. Если предположить, что каждая грация отдала каждой музе по 2 плода, то мы приходим к ответу 6, а если по 3 плода, то ответ будет 24. Вообще можно считать, что грация передает каждой музе по одинаковой кучке плодов, и тогда ответом будет 12, умноженное на число плодов в этой кучке.

Ответ: Любое число, делящееся на 12.


Задача 80.Ученый Виженер придумал такой способ шифровки текста. Вначале задумывается какое-нибудь слово (ключ шифра). Затем определяются номера букв этого слова в алфавите. А затем в шифруемом тексте каждая буква заменяется на следующую за ней в алфавите с таким сдвигом, который указывает полученный ключ. Например, зашифруем фразу «Сегодня хорошая погода» с помощью ключа «гав». Определим номера букв в ключе:

Теперь сдвинем буквы в соответствии с ключом, повторяя его, сколько нужно раз:

Последняя запись и будет шифром. Объясни, как, зная ключ «гав», прочитать запись «Хжжтерг цсфпыда ттдсзб».

Ответ: Нужно записать под данной фразой цифры 413…, а затем сдвигаться по алфавиту назад на столько букв, какова цифра под расшифровываемой буквой.


81 - 90

Задача 81.Известно, что а · b = 18. Чему равно (а · 2) · (b : 3)?


Надо попросить детей придумать задачу на эту тему.

Ответ: 12.


Задача 82.В футбольном турнире участвуют 5 команд из Москвы, Санкт-Петербурга, Великого Новгорода, Нижнего Новгорода и Екатеринбурга. Турнир проводится в два круга: каждая пара встречается один раз в одном городе, другой — в другом. Сколько матчей состоится в каждом городе? Сколько всего матчей в этом турнире?


Чтобы понять условие, нужно разобраться, какие игры и в каких городах проведет каждая команда. Начнем, например, с команды Москвы. Она проведет две игры с петербуржцами: одну в Москве, одну в Санкт-Петербурге. Она проведет две игры с Великим Новгородом: одну у себя, другую в гостях — и так далее. Результатом такого рассмотрения становится рисунок, на котором изображены пять стадионов и отмечено, какие команды приедут в гости на эти стадионы. Теперь ясно, что в каждом городе состоится по 4 матча, а всего матчей будет 5 · 4 = 20. Полезно спросить, сколько было бы матчей на каждом стадионе и сколько всего, если бы команд было 10. А самые сильные ученики могут придумать формулу n · (n — 1), обозначающую число встреч в двухкруговом турнире с n участниками.

Ответ: По 4 на каждом стадионе; всего 20.


Задача 83.Старинная русская задача. Некто узнал, что корова на ярмарке стоит вчетверо дороже собаки и вчетверо дешевле лошади. Он взял на ярмарку 200 рублей и на все эти деньги купил собаку, двух коров и лошадь. Что почем?


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже