Первым взвешиванием сравним тысячу монет с другой тысячей монет. Если весы уравновесятся, фальшивая монета — та, которая не попала на весы. Тогда вторым взвешиванием узнаем, тяжелее она или легче любой другой монеты. Если же весы не уравновесятся, то возьмем, например, более легкую тысячу монет и вторым взвешиванием сравним ее половины. Если они уравнялись, то фальшивая монета среди более тяжелой тысячи, то есть фальшивая монета тяжелее настоящей. А если не уравнялись, то фальшивая монета среди более легкой тысячи, то есть она легче, чем настоящая.
61 - 70
Задача 61.
Нужно понять условие. Для этого нужно спросить, годится ли в качестве ответа число 1. В нем одна единица, а букв четыре: о, д, и, н. Точно так же не годится число 2. А число 3 годится: в нем три единицы, и оно записывается тремя буквами: т, р, и. Но это число не единственное — пусть дети найдут еще одно такое число.
Задача 62.
Надо попросить детей придумать текст задачи на эту тему.
Задача 63.
В первой игре надо назвать 40.
Это можно сделать, если противник назовет любое число от 36 до 39. Для этого надо назвать 35.
Это можно сделать, если противник назовет любое число от 31 до 34. Для этого надо назвать 30.
Это можно сделать, если противник назовет любое число от 26 до 29. Для этого надо назвать 25.
Это можно сделать, если противник назовет любое число от 21 до 24. Для этого надо назвать 20.
Это можно сделать, если противник назовет любое число от 16 до 19. Для этого надо назвать 15.
Это можно сделать, если противник назовет любое число от 11 до 14. Для этого надо назвать 10.
Это можно сделать, если противник назовет любое число от 6 до 9. Для этого надо назвать 5. Это можно сделать, если противник назовет любое число от 1 до 4.
Во второй игре надо заставить противника назвать 40. Для этого надо назвать 39.
Это можно сделать, если противник назовет любое число от 35 до 38. Для этого надо назвать 34.
И так далее.
Во второй игре надо ходить первым, назвать число 4 и далее, независимо от того, какие числа называет противник, называть числа, оканчивающиеся на 9 или на 4.
Задача 64.
На 1 начинаются восемь таких чисел: от 12 до 19, на 2 — семь, на 3 — шесть, на 4 — пять, на 5 — четыре, на 6 — три, на 7 — два, на 8 — одно число.
Задача 65.
Напишем очевидные цифры:
Теперь определяется первый множитель:
405 · * дает 2**5, значит * = 5, и второй множитель разгадан.
Задача 66.
Каждый член последовательности равен предыдущему, умноженному на 1, 2, 3….
Задача 67.
Решение дано на рисунке.
Задача 68.
Надо попросить детей придумать задачу на эту тему.
Задача 69.
Задача 70.
Возможны четыре способа решения.
1-й способ. Обозначим через х число шашек у сына, а через х + 2 — число шашек у папы. Тогда (х + 2) + х = 12.