Читаем Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) полностью

ОБИТАТЕЛИ ГИПЕРБОЛИЧЕСКОГО МИРА

Понимают ли существа, обитающие в мире Пуанкаре, в каком пространстве они живут? Представим, что один из обитателей этого мира измерил длину свой ладони, которая оказалась равной 20 см. Затем он начинает идти в сторону края круга и спустя некоторое время снова измеряет длину ладони. Для нас его ладонь уменьшится в размерах, а для него длина ладони будет по-прежнему равна 20 см, так как расстояние между делениями линейки тоже уменьшится. Измерения относительны: для нас, сторонних наблюдателей, его ладонь уменьшится в размерах, для жителя этой плоскости ее длина не изменится. Аналогично для нас его мир ограничен, а для него — безграничен, так как он никогда не сможет достичь его края. Как обитатель этого мира может понять, что живет на гиперболической плоскости? Один из возможных способов — найти сумму углов произвольного треугольника, которая будет меньше 180°. Треугольник должен быть достаточно большим, чтобы на результат не повлияла погрешность измерений, так как с увеличением размеров треугольника сумма его углов будет уменьшаться. Еще один способ — провести окружность радиуса r и убедиться, что ее длина превышает 2πr (поэтому плоскость и называется гиперболической). Однако в этом случае радиус окружности также должен быть достаточно большим.

* * *

В серии работ «Предел — круг» Эшер попытался изобразить эту метрику и свойство прямых в гиперболической геометрии, в то же время дав собственную трактовку бесконечности как вселенной в капле воды. Схемы замощения могут отличаться: представленная на рисунке схема, которую использовал в своей работе

Пуанкаре, состоит из семиугольников. Каждая вершина семиугольника является общей еще для двух семиугольников. Особенный интерес представляет картина Зшера «Ангелы и демоны», на которой пятиугольники, в которых все углы «прямые», каждой вершиной соединяются еще с тремя.



Слева — треугольная функция, которую использовал Пуанкаре в работе об эллиптических функциях. Как позднее говорил сам Пуанкаре, в этой работе он применил неевклидову геометрию. Справа — «Ангелы и демоны» Эшера.


О войнах и длине границ


Чешский географ и статистик Яромир Корчак изучал влияние географического местоположения на население. В 1938 г. он провел статистические исследования числа больших островов в разных регионах мира и обнаружил закон, который сыграл ключевую роль в определении понятия размерности в математике. Для данной площади S он вычислил число островов с площадью, большей чем S. Подсчитав по этому правилу число островов N(S) для каждого S, он представил результаты в виде точек на оси координат. Выполнив эти действия для разных регионов, для каждого из них он получил соответствующий график. Он заметил, что эти графики похожи: N обратно пропорционально S в определенной степени, то есть N равно константе k, разделенной на S в степени, которую мы обозначим за D:

N(S) = k/SD.

Корчак сопоставил каждому региону соответствующее значение D. Впоследствии его результаты были уточнены, и теперь нам известно, что D для Африки (где один большой остров окружен мелкими) равно 0,5; D для Индонезии и Северной Америки (где крупные острова преобладают не столь явно) равно 0,75, а для всей планеты это число равно 0,65.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное