Читаем Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) полностью

Рассмотрим любопытный пример двух многоугольных спиралей, подобных тем, что показаны на рисунке выше. Справа изображена бесконечная спираль. В ней каждая сторона относится к предыдущей как 1/q. Сумма длин всех сторон равна сумме ряда 1 + 1/q + 1/q2 + 1/q3 +…, равной q/(q — 1). Следовательно, эта спираль имеет конечную длину. Например, если мы выберем q = 1,05, сумма (то есть длина всех сторон) будет равняться 21.

Спираль слева построена по иному, но тоже очень простому правилу: большая сторона спирали равна 1, следующая — 1/2, следующая — 1/3, затем 1/4 и так далее. Известно, что этот ряд не сходится, то есть спираль на рисунке слева имеет бесконечную длину, а спираль на рисунке справа — конечную длину. Можно ли было предположить что-то подобное?


* * *

На основе графиков Ричардсон попытался выяснить причину столь заметных различий, которые могут достигать 20 %. Его объяснение столь же удивительно, сколь и очевидно: единица измерения, используемая одной страной, может быть намного меньше, чем единица измерения, применяемая в другой стране. В чем же заключались эксперименты Ричардсона? Допустим, мы фиксируем раствор циркуля, равный 10 см. Затем мы с помощью циркуля по карте измеряем протяженность береговой линии, непрерывно отсчитывая ее длину. Полученное значение является лишь приближенным, так как береговая линия на карте имеет выпуклости и вогнутости размерами меньше 10 см. Затем уменьшим раствор циркуля и установим его равным 1 см, после чего повторим измерения. Очевидно, что в этот раз результат измерений будет больше, так как ломаная линия, прочерченная циркулем, будет точнее соответствовать береговой линии. Здравый смысл подсказывает, что эти значения сходятся к некоторому конечному числу, которое и будет истинной длиной побережья или границы. Однако Ричардсон показал, что результат измерений будет бесконечно возрастать по мере уменьшения единицы измерения и увеличения масштаба карты. Этот удивительный факт известен под названием «эффект Ричардсона».



Приближенные вычисления длины береговой линии острова Мальорка, выполненные с различной точностью. Измерения слева производились отрезком большей длины, чем на иллюстрации справа. Нетрудно видеть, что точность измерения на рисунке справа выше. Удивительно, но в соответствии с эффектом Ричардсона с ростом точности пределом измерений будет не истинная длина береговой линии, а бесконечность.


В свое время научное сообщество проигнорировало исследования Ричардсона, однако сегодня они считаются крайне важными, так как дали толчок к изучению фракталов. Бенуа Мандельброт цитирует Ричардсона в известной статье 1967 г. под названием «Какова длина побережья Великобритании?». В этой статье Мандельброт объясняет, что понятие длины для объектов неправильной формы, например для побережья, не имеет смысла. Как следствие, математики определили число, которое являлось бы количественной оценкой площади подобных объектов неправильной формы. Это число — экстраполяция числа «привычных» измерений объектов классической геометрии (одно, два, три измерения и так далее). Следовательно, «неевклидовы» объекты неправильной формы подобного типа часто имеют дробное число измерений.


Все зависит от способа измерения


Геометрия Евклида, в которой число измерений может быть только целым, не отражает всей сути фигур неправильной формы. Эксперимент Ричардсона равносилен вычислению длины в разных масштабах. Если мы измерим длину побережья из космоса, то полученный результат будет меньше, чем если мы, подобно муравью, пройдем вдоль всего побережья, считая каждую песчинку.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное