Читаем Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) полностью

Рассмотрим первое покрытие (слева) и обратим внимание на маленький участок, почти точку, закрашенный черным цветом: он покрыт пятью печатями, и нет никакого другого участка, который был бы покрыт большее число раз. Следовательно, кратность этого покрытия равна пяти. Можно ли уменьшить эту кратность? Иными словами, можно ли поставить печать на всех точках поверхности, не покрывая какую-либо точку пять раз? На рисунке справа видно, что это возможно: мы слегка уменьшили площадь печатей (каждая из них содержится внутри соответствующей печати, расположенной в том же месте на рисунке слева), и вся нужная область оказалась покрытой полностью. Это новое покрытие называется подпокрытием предыдущего. Для нового покрытия кратность уменьшилась до четырех.

Можно получить покрытие кратности 3, как показано на следующем рисунке, но покрытие кратности 2 уже невозможно.



Заданная область, каждый участок которой покрыт не более чем тремя печатями.

(Источник: Мария Изабель Бинимелис.)


В целом говорят, что множество имеет топологическую размерность п, если наименьшая возможная кратность его покрытия равна n + 1. Следовательно, говорят, что топологическая размерность первой фигуры (кривой) равна 1, размерность второй фигуры (области) равна 2. Точка является 0-мерной, линия — одномерной, плоскость — двумерной, а евклидово пространство n является n-мерным.

С этой точки зрения размерность произвольного пространства (точки, линии, поверхности и других) соответствует минимальному числу параметров, необходимых, чтобы описать различные точки этого пространства. Например, чтобы описать все точки плоскости, достаточно всего двух координат: абсциссы (которая, например, определяет длину) и ординаты (определяет ширину). Пространство требует наличия уже трех координат: длины, ширины и высоты.

Необходимость ввести определение топологической размерности была в значительной степени вызвана тем, что традиционное определение размерности (в котором фигурировали интуитивно понятные и неточные термины, например «тонкость») было поставлено под сомнение в последние годы XIX в. Первое определение следует из доказательства Кантора, которое подтверждает взаимно однозначное соответствие между множеством точек вещественной прямой 1 и вещественной плоскости 2.Второе определение основано на том, что существует непрерывная функция 1 на 2, открытая Пеано.


О кривых, покрывающих плоскость


Одна из задач вычислений — это выполнение различных измерений, например, измерение длин кривых, площадей фигур, объемов тел и так далее. Иногда точно измерить длину кривой непросто, но можно получить приближенный результат с очень хорошей точностью, используя спрямление кривой (приближение кривой ломаными линиями или полигональное приближение). Чем меньше отрезки ломаной линии, тем точнее результат. На следующем рисунке показано приближение синусоидальной кривой отрезками ломаной линии, расположенными так, что концы отрезков лежат на этой кривой.



Приближение кривой ломаными.


Кривая называется спрямляемой, если длины вписанных в нее ломаных стремятся к определенному общему значению L, когда длины отрезков ломаных стремятся к нулю, то есть отрезки становятся все короче и короче. Это общее значение L и будет длиной заданной кривой. Для вычисления площадей используются аналогичные рассуждения с той лишь разницей, что вместо длин отрезков вычисляется площадь прямоугольников.

В приведенном примере мы используем различные объекты, имеющие топологическую размерность 1 (отрезки), чтобы вычислить приближенное значение объекта такой же размерности (кривой). Алгоритм действий удивительно остроумен и в то же время интуитивно понятен.

Существует ли вероятность аппроксимации объектов любой евклидовой размерности с помощью других объектов меньшей размерности? Например, можно ли найти приближенное значение площади квадрата с помощью кривой? Интуитивно понятно, что это невозможно: кривые не имеют толщины, следовательно, не могут покрывать пространство полностью. Иными словами, объект, имеющий топологическую размерность 1 (кривую) нельзя преобразовать в объект размерности 2 (например, в квадрат). Кажется, что предполагать обратное было бы попросту нелепо.


Кривая Пеано


Итальянский математик Джузеппе Пеано в 1890 г. открыл непрерывную кривую, проходящую через все точки квадрата с единичной стороной, то есть кривую размерности 1, которую можно преобразовать в объект размерности 2. Пеано следовал тем же путем, что и Кантор, который ранее доказал противоречащее интуиции утверждение: мощность бесконечного множества точек отрезка единичной длины равна мощности бесконечного множества точек любой поверхности, например квадрата с единичной стороной. Подробнее мы рассмотрим это революционное открытие несколько позже[18].

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное