Интуиция подсказывает, что непрерывная кривая — это «путь, которым следует точка при непрерывном движении». Чтобы устранить неоднозначность определения и подчеркнуть значимость открытия Пеано, Жордан в 1887 г. ввел следующее строгое определение непрерывной кривой: «Непрерывная кривая является непрерывным отображением отрезка, определенным для всех точек единичного отрезка». Стандартный алгоритм построения кривой Пеано — это повторяющийся процесс, при котором каждый из девяти отрезков исходной кривой заменяется кривой, сгенерированной на каждой итерации алгоритма.
Девять отрезков исходной кривой приведены на рисунке ниже (первый отрезок обозначен цифрой 1 и так далее):
Затем процесс повторяется для каждого из девяти исходных отрезков (иными словами, каждый из девяти отрезков заменяется всем рисунком) и так далее. В результате получим кривую следующего вида (на нижней тройке изображений углы срезаны, чтобы наглядно показать, что кривую Пеано можно построить, не отрывая карандаша от бумаги).
Однако сам Пеано нашел лишь аналитическое построение, но не определил этот итеративный процесс и также не смог изобразить эту кривую графически (однако он привел рисунок в виде перевернутой восьмерки, чтобы показать непрерывность найденной им кривой). Пеано просто показал, как именно график найденной им функции будет постепенно заполнять квадрат. Другие математики в попытках графически представить абстрактную функцию, описанную Пеано, предложили итеративный алгоритм ее построения, показанный на рисунках выше, а также на следующем рисунке:
Как следствие, мы не знаем, какую именно из этих кривых можно назвать собственно кривой Пеано. Обе они в пределе образуют одну и ту же фигуру — квадрат.
В статье Пеано, которая была опубликована в 1890 г., впервые описывалась кривая, покрывающая плоскость.
Также существуют варианты кривой Пеано, которые не покрывают плоскость. Одну из них можно получить аналогичным преобразованием исходных девяти отрезков с тем отличием, что вертикальные линии будут короче горизонтальных.
Еще одну кривую подобного вида можно получить, если удалить центральный отрезок. Эта кривая обладает интересным свойством: ее график является непрерывным, но функция, которая определяет эту кривую, непрерывной не является.
МУЗЫКА И МАТЕМАТИКА
Идея о том, что одномерный объект может целиком покрывать плоскость, легла в основу музыкальных композиций. Например, скрипач Скоп Джон сочинил 11-минутную композицию для контрабаса и английского рожка, в первой части которой два инструмента целиком заполняют ритмическое и тональное пространство. Когда начинает появляться новая тональность, один из двух инструментов немедленно переходит в другую тональность. В результате образуется своеобразное противостояние между длинными выразительными и быстрыми энергичными фразами. Во второй части оба исполнителя выдерживают единообразие формы и стиля. Неясные тональности первой части становятся более четкими. Если мы рассмотрим партитуру в различных масштабах, то заметим обилие схожих частей.
Еще до того, как появились графические изображения кривой Пеано, Давид Гильберт открыл другую кривую, которая также покрывает плоскость. Базовый принцип, лежащий в основе кривой Гильберта, слегка отличается от принципа кривой Пеано: используется не единственный шаблон, а несколько, и к каждому из них применяются различные правила. Подобные построения называются нестандартными.
На рисунке показано, как на каждом шаге части кривой соединяются тремя отрезками, которые непрерывно уменьшаются в размерах. Именно так описал построение этой кривой сам Гильберт в 1891 г. в короткой статье всего на двух страницах. Существует стандартное построение этой же кривой, в основе которого лежит несколько иная фигура. Оставим поиски этого построения заинтересованному читателю. Отличие кривой Гильберта от кривой Пеано в том, что в первой на каждом шаге построения длины отрезков и квадратов уменьшаются в два раза, а в кривой Пеано — в три раза.