Читаем Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) полностью

В начале XX в. одной из крупнейших задач математики было определение размерности и ее свойств. Ситуация осложнилась, когда начали появляться различные виды размерности: топологическая, размерность Хаусдорфа, фрактальная, самоподобия и многие другие. Все они связаны между собой, в определенных ситуациях некоторые из них имеют смысл, а другие нет, иногда они совпадают, иногда отличаются. Вопреки тому, что можно было бы ожидать, не следует думать, будто существует некое единственное определение размерности, которое полностью раскрывает смысл этого понятия. Поиски единого приемлемого универсального определения, подобно поискам Святого Грааля, оказались безрезультатны.

Джеральд А. Эдгар в своей книге Measure, Topology and Fractal Geometry («Измерения, топология и фрактальная геометрия») так иллюстрирует понятие размерности:

«Пусть дана точка в трехмерном пространстве. Мы можем заключить ее внутрь куба, словно в тюрьму. Куб образован шестью плоскими гранями. Следует учитывать, что эти грани являются двумерными. Мы можем заключить точку на одной из этих граней в „тюрьму“, нарисовав вокруг нее небольшую окружность. Если грани куба являются двумерными, то нужно понимать, что окружность является одномерной. Точка, которая находится внутри одной из окружностей, может быть заключена в „тюрьму“ с помощью двух точек, которые будут стенами „тюрьмы“. Следует учитывать, что множество, содержащее всего две точки, имеет нулевую размерность. Наконец, точка, которая находится на множестве из двух точек, уже не может двигаться. Чтобы заключить ее в „тюрьму“, не нужно стен. По определению, это множество имеет размерность 0».

Идея определения размерности по индукции восходит к «Началам» Евклида, где неявно приводится похожая формулировка: говорят, что фигура является одномерной, если ее граница состоит из точек; двумерной, если ее граница образована кривыми; трехмерной, если ее граница состоит из поверхностей.

Пуанкаре заново рассмотрел этот вопрос, оперируя похожими терминами, и ввел понятие топологической размерности. Он дал такое определение: пространство имеет размерность n, если его можно каким-либо способом разделить пространством, имеющим размерность n — 1. Однако, чтобы это определение стало более строгим, нужно корректно определить значение формулировки «каким-либо способом разделить». В 1913 г. первую попытку уточнить это определение предпринял Брауэр, затем десять лет спустя Урысон. Каждый привел различные толкования, но для локально связных пространств они совпадают. Так, в настоящее время наиболее важными считаются три определения топологической размерности: индуктивное определение Урысона (и Менгера), индуктивное определение Брауэра (и Чеха), а также размерность Лебега, определенная посредством покрытий[16].

Топологическую размерность Лебега (далее мы будем именовать ее просто топологической размерностью) очень удобно использовать для множеств, имеющих неправильную структуру.

Наглядно изобразить топологическую размерность очень просто. Покрытием подмножества S на n является семейство открытых множеств[17] таких, что их объединение содержит множество S. На рисунке показано покрытие кривой на 2.



Покрытие кривой с кратностью 2.

(Источник иллюстраций на этой странице: Мария Изабель Бинимелис.)


Аналогичные действия можно выполнить для любой части заданной плоскости. Приведем простую аналогию. Пусть нужно закрасить определенную область зеленым цветом. У нас есть одна или несколько печатей, которые могут иметь круглую или другую форму. Покрытием этой области будет раскрашивание ее в зеленый цвет без промежутков. Очевидно, что некоторые участки будут покрыты несколько раз, поэтому они будут окрашены в более темный цвет. Выберем из всех таких участков один (или несколько) самого темного цвета, то есть такой, который был закрашен наибольшее число раз, и назовем это число кратностью покрытия. Взгляните на рисунок ниже.



Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное