Читаем Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) полностью

Рассмотрим в качестве примера клубок ниток. Издалека он кажется точкой, иными словами, фигурой с нулем измерений. Если наблюдатель подойдет ближе, то увидит, что клубок напоминает сферу, то есть имеет три измерения. Если он еще приблизится, то увидит, что в клубок свернута одна нить; таким образом, клубок будет иметь всего одно измерение. Когда наблюдатель приблизится настолько, что сможет рассмотреть структуру нити, то клубок снова станет трехмерным, поскольку станут видны отдельные волокна, из которых состоит нить. Подобный процесс можно продолжать и далее. Таким образом, очевидно, что о числе измерений клубка ниток нельзя говорить объективно: все зависит от положения наблюдателя, то есть от масштаба наблюдений.

Продемонстрируем эффект Ричардсона, сравнив приближенное значение длины окружности с одной стороны и периметр острова Мальорка — с другой. Пусть окружность имеет диаметр 100 км — это величина одного порядка с диаметром острова. Длина окружности будет в 71 раз больше диаметра, то есть 314,15… км. Поместим результаты на логарифмическую шкалу, чтобы лучше оценить результаты для разных растворов циркуля, которые мы будем применять при измерениях. Отметим на горизонтальной оси логарифм величины, обратной раствору циркуля, что можно интерпретировать как точность измерений: при малом растворе циркуля s точность измерений 1/s будет выше. На вертикальной оси будем отмечать логарифмы от рассчитанных значений периметра.

Для раствора циркуля, эквивалентного 50 км, наилучшим приближением окружности будет шестиугольник со стороной в 50 км и периметром в 300 км. Если в качестве приближения окружности мы выберем 12-угольник со стороной 25,882 км, то приближенное значение ее длины составит 310,584 км, для 24-угольника со стороной 13,053 км — 313,272 км, для 48-угольника со стороной 6,54 км — 313,92 км, для 96-угольника со стороной 3,272 км — 314,112 км и для 192-угольника со стороной 1,636 км снова получим длину, равную 314,112 км. Мы видим, что по мере уменьшения раствора циркуля приближенное значение длины окружности все ближе и ближе к реальному.

Однако при измерении длины побережья Мальорки все иначе. Если в качестве приближения выберем многоугольник со стороной 28 км, получим периметр 362,2 км, для многоугольника со стороной 14 км периметр будет равен 416,7 км, при стороне, равной 7 км, периметр будет равен 467,7 км, при стороне 3,5 км периметр достигнет 524,8 км.



В обоих случаях точки графика с хорошей точностью аппроксимирует прямая. Очевидно, нельзя ожидать, что точки будут лежать точно на одной прямой — это невозможно в силу неизбежной погрешности измерений. В случае с окружностью прямая расположена практически горизонтально; для береговой линии Мальорки прямая имеет наклон (угловой коэффициент d = 0,17). Уравнение прямой можно выразить в виде log l = d∙log (1/s) + k, где l — приближенное значение периметра для раствора циркуля s; d — рассчитанный угловой коэффициент прямой; k — некая постоянная. При переходе к экспоненциальной форме получим:

l = с/sd,

где с — основание логарифма в степени k.

Заметьте, насколько эта формула похожа на закон Корчака.

Итог работы Ричардсона таков: традиционное понятие длины при измерении береговой линии не имеет смысла. Он предложил использовать новую величину, которую можно назвать «морщинистость», определяемую значением углового коэффициента d из предыдущего примера. Для реальных границ и побережий были получены следующие значения d:

d = 0,25 для западного побережья Британии, одного из самых изрезанных заливами берегов на планете;

d = 0,15 для границы Германии;

d = 0,14 для границы Испании с Португалией;

= 0,13 для побережья Австралии;

d = 0,02 для южноафриканского побережья, одного из наиболее ровных берегов.

Фрактальные объекты в природе обычно можно увидеть в границах и деревьях.

К границам относятся границы между любыми двумя средами в биологии, физике, химии и так далее, а также между двумя разными поверхностями: границы между странами, берега рек, морские побережья, облака и многое другое.

К деревьям в этом смысле можно отнести все случаи ветвления с самоподобием: деревья, кусты и растения, бассейны рек, молнии и так далее.



Некоторые растения и бассейны некоторых рек при наблюдении с высоты имеют фрактальную структуру.


О покрытиях


Кривые, поверхности и объемные тела могут быть столь сложны, что измерение их параметров может вызвать серьезные затруднения. Однако длина, площадь и объем не изменяются произвольно в зависимости от выбранного масштаба, и существуют законы, позволяющие вычислить одну из этих величин, если известна другая. Закон, открытый Ричардсоном (а также открытия Корчака, Ципфа и Херста), согласно которому длина является степенной функцией точности с показателем степени d, будет полезен в обсуждении нового понятия — размерности.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное