Читаем Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) полностью

Чтобы лучше понять определение размерности подобия, рассмотрим несколько классических математических объектов, обладающих свойством самоподобия. Первым из таких объектов, который был открыт задолго до кривой Пеано (она также обладает свойством самоподобия; ее размерность мы вычислим позднее), было канторово множество. В наши дни Георг Кантор известен прежде всего благодаря своим трудам о бесконечности, в которых, в частности, доказал, что между точками пространства 1 и точками пространства 2 существует взаимно однозначное соответствие (об этом мы упомянули выше). Канторово множество было описано в 1883 г. За необычный внешний вид его также называют канторовой пылью. Построить его достаточно просто: начнем с единичного отрезка и удалим его среднюю треть, то есть интервал от 1/3 до 2/3. Затем удалим из каждого из двух полученных отрезков его среднюю треть (длиной 1/9), затем удалим среднюю треть (длиной 1/27) у всех четырех полученных отрезков и так далее. Результатом построения и будет канторово множество:



Это множество сложно изобразить, так как оно постепенно «исчезает», но нетрудно представить, как оно будет выглядеть, если мы продолжим процесс построения. Заметим, что если мы уменьшим канторово множество в три раза, то получим его левую часть. Если мы сделаем копию полученного множества и перенесем ее на 2/3 вправо, то получим правую часть канторова множества. Таким образом, канторово множество состоит из двух частей, каждая из которых в три раза меньше целого. По формуле размерности подобия получим:

Ds = log 2 / log 3 ~ 0,6309.

В канторовом множестве отсутствует какая-либо связь между точками, следовательно, его топологическая размерность равна нулю. Как можно видеть, его размерность подобия больше, чем топологическая размерность.

Для кривой Пеано, которая строится из девяти отрезков, n = 9, коэффициент уменьшения равен 1/3. Следовательно, ее размерность подобия равна

Ds = log3 2/ log 3 = 2.

Двумерным аналогом канторова множества является так называемый ковер Серпинского. Его впервые описал польский математик Вацлав Серпинский в 1916 г. Первые четыре итерации построения ковра Серпинского выглядят так:



Можно сказать, что при построении ковра Серпинского на каждой итерации мы удаляем центральный квадрат полученной фигуры. Ковер Серпинского можно построить и другим способом: для этого нужно удалить центральный отрезок при построении кривой Пеано из девяти отрезков. Так как его можно получить из восьми копий оригинала, уменьшенных в три раза, то его размерность подобия будет равняться log 8/log 3–1,8928. Серпинский показал, что полученная кривая является универсальной, то есть содержит любую кривую, которую можно построить на плоскости. Если мы выполним аналогичное построение, взяв за основу пятиугольник или любой другой правильный многоугольник, то получим бесконечное множество «ковров». Наиболее известный из них, который строится на основе треугольника, — это так называемый треугольник Серпинского, изучением которого также занимался этот польский математик. Этот треугольник тоже можно получить итеративным построением на основе кривой; он имеет топологическую размерность 1 и размерность подобия, равную log 3 / log 2 ~ 1,5850.



Первые итерации построения треугольника Серпинского


Если мы перейдем к трем измерениям и обобщим построение канторова множества для куба, получим еще один удивительный объект — губку Менгера, названную в честь австрийского математика Карла Менгера, который открыл эту фигуру в 1926 г., когда занимался изучением топологической размерности. Это также универсальная кривая, но уже в трехмерном пространстве. Она имеет размерность подобия, равную log 20/log 3 ~ 2,7268, так как ее можно получить из 20 кубиков, каждый из которых в три раза меньше всей фигуры.



Скульптурное изображение губки Менгера.


«Близким родственником» этой кривой является тетраэдр Серпинского, который строится путем удаления центрального из пяти одинаковых тетраэдров. Он имеет чуть меньшую размерность подобия, нежели губка Менгера: log 4 / log 2 = 2.



Тетраэдр Серпинского.


Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное