Читаем Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) полностью

Теперь, когда мы знаем, как вычисляется размерность подобия, попробуем связать ее с показателем степени, который фигурирует в законе Ричардсона, описывающем измерение границ и береговых линий. Представим, что мы хотим найти формулу Ричардсона для берега воображаемого острова, который имеет форму снежинки Коха. Этот остров (назовем его остров Коха) образован тремя одинаковыми кривыми, каждая из которых состоит из четырех самоподобных частей; коэффициент уменьшения равен 1/3. Следовательно, будет разумным выбрать для измерения длины берега раствор циркуля, равный 1/3, 1/9, 1/27 и так далее. Измерим один из трех берегов острова. Начнем с раствора циркуля, равного 1/3. Допустим, что длина стороны исходного треугольника равна единице. Первое приближенное значение длины берега будет равно 4/3. Выбрав раствор циркуля, равный 1/9, получим значение длины 16/9. Выполнив аналогичные расчеты, получим, что для раствора циркуля s = 1/3k имеем l = (4/3)k.

Представим полученные значения на логарифмической шкале. Мы можем выбрать любое основание логарифма. Будем использовать логарифмы по основанию 3 — это упростит вычисления, так как коэффициент уменьшения равен 1/3. Вспомним, что уравнение прямой, найденное Ричардсоном, имеет вид log3 l = d∙log3 (1/s). Если мы подставим в нее значения, вычисленные для стороны острова, получим log3 (4/3)k = d∙log33h. Упростив, получим d = log3 (4/3) = 0,2619.

Вспомним, что размерность подобия для снежинки Коха равнялась Ds = 1,2629. Как видим, дробные части этих чисел совпадают. Можно показать, что для объекта, обладающего самоподобием, наклон прямой Ричардсона d и размерность подобия связаны следующей простой формулой: Ds = 1 + d. Это означает, что размерность подобия можно вычислить двумя способами. Первый основан на геометрических свойствах фигуры, в нем фигурирует число частей структуры, подобных всей структуре в целом, и коэффициент уменьшения. Этот способ мы уже неоднократно использовали. Второй способ заключается в измерении расстояний с помощью циркуля.

Заметим, что размерность, вычисленная по алгоритму Ричардсона, является обобщением размерности подобия (они отличаются на единицу). Иными словами, мы можем вычислить фрактальную размерность для кривых, которые не обладают свойством самоподобия, например для берегов или границ. Но как можно вычислить размерность объектов, которые напоминают по форме пятно, губку или облако? В этих случаях циркуль нам не поможет. Расчет фрактальной размерности объекта может оказаться трудной задачей. Существует множество фракталов, размерность которых до сих пор не удалось рассчитать.

В этом случае нужно использовать размерность Минковского-Булигана. Она также известна как размерность Минковского, или грубая размерность. Она широко применяется в науке, так как ее можно очень просто рассчитать с помощью компьютера. Она также схожа с топологической размерностью и размерностью подобия.

Рассмотрим, почему это так. Проанализируем покрытие объекта, для которого мы хотим вычислить размерность. Если этот объект находится на плоскости, будем использовать для покрытия круги сравнительно малого радиуса. Если же объект находится в пространстве, будем использовать сферы. Это схоже с топологической размерностью Лебега, определенной посредством покрытий. Чтобы мы могли использовать общее обозначение для отрезков прямой, кругов на плоскости и сфер в пространстве, будем говорить о «шариках» радиуса эпсилон (ε). Будем обозначать N (ε) число шариков радиуса ε. Вычислим натуральный логарифм от этого числа и разделим его на log (1/ε), что, в свою очередь, отсылает к определению размерности подобия. Вспомним, что, применяя последнюю формулу к различным коэффициентам уменьшения, мы всегда получали один и тот же результат. Для объектов, которые не обладают свойством самоподобия (именно такие объекты мы сейчас рассматриваем), это не так. Определим размерность Минковского Dm как

DM = lime->0 (log N(ε) / log (1/ε)).

Иными словами, размерность Минковского равна значению выражения log N (ε) / log (1/ε), когда ε стремится к 0.


ОПТИМАЛЬНЫЙ МАРШРУТ КОММИВОЯЖЕРА

В 1912 г. Серпинский незадолго до того, как открыл треугольник, названный в его честь, занимался изучением кривой, которая строилась по рекурсивному алгоритму и покрывала плоскость.



Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное