Читаем Observationes Domini Petri de Fermat полностью

Более того, мы открыли впервые прекраснейшее и наиболее общее предложение, а именно: каждое число является либо треугольным, либо суммою двух или трех треугольных; либо квадратом, либо суммою двух, трех или четырех квадратов; либо пятиугольным, либо суммою двух, трех, четырех или пяти пятиугольных, и так далее до бесконечности, для шестиугольных, семиугольных или любых многоугольных чисел; это чудесное и общее предложение может быть высказано, очевидно, для любого числа углов.

Здесь невозможно дать его доказательства, которое зависит от многочисленных и сокровеннейших тайн науки о числах; мы намерены посвятить этому предмету целую книгу и продвинуть удивительным образом эту часть Арифметики за пределы, известные в древности.

OBSERVATIO D. P. F

XIX (p. 188)

Ad quæstionem XXXV Libri IV.

Datum numerum dividere in tres numeros, ut qui fit primo in secundum ducto, sive addito tertio, sive detracto, quadratum faciat. Esto datus 6.


Ita facilius fiet operatio, datus numerus 6. utcunque dividatur v. g. [verbi gratia] in 5. et 1. productus demptâ unitate hoc est 4. per 6. datum numerum dividatur, eveniet 2/3 Quem si turn à 5. tum ab 1 abstuleris duo residua 13/3 et 1/3 erunt duæ priores partes numeri dividendi 3. igitur erit 4/3[20].


Перевод:

Это можно сделать более легким способом. Разложим произвольным образом данное число 6 на две части, например на 5 и 1. Произведение их, из которого вычтена единица, т. е. 4, поделим на данное число 6, получится 2/3. Это частное вычтем как из 5, так и из 1; тогда оба остатка 13/3 и 1/3 можно взять в качестве двух первых частей числа, которое должно быть разложено; тогда третья будет 4/3.

OBSERVATIO D. P. F

XX (p. 203)

Ad commentarium in quæstionem XLIV Libri IV.

QUAESTIO. — Invenire tres numeros, ut compositus ex tribus multiplicatus in primum faciat triangulum, in secundum faciat quadratum, in tertium faciat cubum.

BACHETUS. — … Adverte postremo, in fingendo latere ultimi quadrati, talem adhibendam esse cautionem, ut valor Numeri reperiatur in integris numeris, quum numerus triangulus non posset esse nisi integer. Id autem semper succedet operando modo a Diophanto tradito, si quadrati latus fingatur a tot Numeris qui sint latus quadratorum in numero quadrato æquando contentorum -1. Cæterum vix aliter id fieri posse, satis experiendo deprehendes[21].


Experientiam non satis exactam fecit Bachetus. Sumatur quilibet cubus v. g. [verbi gratia] cuius latus multiplici ternarii superaddat unitatĕ  Erunt, v.g. [verbi gratia], 2Q — 344 æquando triangulo ergo 16.Q — 2751 æquabuntur quadrato cuius latus finges si libet, 4N — 3. etc. Nihil enim vetat quo minus generali methodo loco etiam ipsius 3. reliquos in infinitum impares usurpemus, variando cubos.


Перевод:

Сделанные Баше попытки недостаточно точны. Действительно, возьмем в качестве V3 произвольный куб, сторона которого превосходит кратное трех на единицу. Например,

2x2 — 344 нужно приравнять треугольнику[22];

значит,

16x2 — 2751 будет равно квадрату,

в качестве корня которого можно взять, если угодно, 4x — 3 и т. д.

На самом деле ничто не мешает обобщить метод и взять вместо 3 другое произвольное нечетное число, только надо выбрать соответствующий куб.

OBSERVATIO D. P. F

XXI (p. 209)

Ad commentarium in qusestionem XLV Libri IV.

QUAESTIO DIOPHANTI. — Invenire tres numeros, ut intervallum majoris et medii ad intervallum medii et minoris datam habeat rationem, sed et bini sumpti quadratum conficiant.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука