Читаем Observationes Domini Petri de Fermat полностью

Ad quæstionem IX Libri V.

Invenire tres numeros ut uniuscujusque quadratus, summa trium sive addita sive detracta, faciat quadratum.


Ex supradictis patet posse nos construere generaliter problema invenire quotcumque numeros ut unius cuiusque quadratus summa omnium sive additâ sive detractâ quadratum faciat[27]. Hanc quæstionem forte Bachetus ignoravit Diophantum quippè promovisset ut suprà 31. quæstione lib. 4. et alijs in locis si quæstionis huius solutionem detexisset.


Перевод:

Из сказанного выше явствует, что мы можем решить более общую задачу:

Найти сколько угодно чисел таких, чтобы квадрат каждого из них, увеличенный или уменьшенный на сумму всех этих чисел, составлял бы квадрат.

Баше, вероятно, не знал решения этой задачи; иначе он обобщил бы вопрос Диофанта, как он это сделал для IV31 и других.

OBSERVATIO D. P. F

XXV (p. 224)

Ad commentarium in quæstionem XII Libri V.

QUÆSTIO DIOPHANTI. — Unitatem dividere in duas partes, et utrique segmento datum numerum adjicere et facere quadratum. Oportet autem datum neque imparem esse * neque huius vero quadrati latus est

851/1551

Per quod si dividas singula latera trianguli mox reperti, habebis triangulumquæsitum

12061328235/2047166451. 4492913004/2047166451. 4653/851,

duplum ejus N. unitas majorem habere quadrantem quam est numerus, quo ipsum metitur primus numerus *[28].

BACHETUS… Reliqua verò verba «neque duplum ejus, etc.» adeo vitiata sunt ut nullam commode recipere possint explicationem. Non dubito quidem Diophantum respexisse ad aliquam numerorum non vulgarem proprietatem, qua definitur quis numerus par deligendus sit, ut duplum ejus unitate auctum sit quadratus numerus vel compositus ex duobus quadratis. Sed quid sibi velit in tanta verborum caligine divinare non possum; id oneris relinquam illi qui in codicem aliquem emendatiorem incideint … Sane quod ait Xilander, verba illa corrupta videri velle, debere eum qui datur esse duplum numeri primi, id utique futile est et nulli fundamento nixum, quodque ipsa statim experientia refelli potest: nam, si datus sit 10, is est duplus numeri primi 5 et tamen quæstioni solvendæ minime reperitur idoneus, nam oporteret dividere in duos quadratos numerum 21. Quod quidem impossibile est, ut reor, quum is neque quadratus sit, neque suapte natura compositus ex duobus quadratis.


Numerus 21. non potest dividi in duos quadratos in fractis. Hoc autem facillime demonstrare possumus, et generalius omnis numerus cuius triens non habet trientem non potest dividi in duos quadratos neque in integris neque in fractis.


Перевод:

Число 21 не может быть разложено на сумму двух дробных квадратов. Мы можем это легко доказать. И вообще, никакое число, третья часть которого не имеет трети, не может быть разложено на два квадрата ни целых, ни дробных.

OBSERVATIO D. P. F

XXVI (p. 225)

Ad idem commentarium.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука