Читаем Observationes Domini Petri de Fermat полностью

Возьмем три числа, удовлетворяющих задаче, так что каждое из них, сложенное с данным числом, составит квадрат, как это и было предложено. Пусть четвертым искомым будет x + 1. Получим тройное равенство, решение которого легко находится с помощью нашего метода. Смотри замечание к задаче VI24 [в настоящем издании VI22И. Б.].

Этим решается и вопрос, предложенный Баше к задаче III12 [у нас III10И. Б.], и помимо того, что метод более общий, он имеет еще то преимущество перед методом Баше, что при нашем решении три первых числа, сложенные с данным, составляют квадрат.

Однако мне до сих пор неизвестно, можно ли решить задачу при условии, что и четвертое число, сложенное с данным, составляет квадрат. Это надо будет еще исследовать.

OBSERVATIO D. P. F

XXIII (p. 220)

Ad quæstionem VIII Libri V.

Invenire tria triangula rectangula quorum area sint æquales.


Num vero inveniri possunt 4. aut etiam plura in infinitum triangula æqualis areæ nihil videtur obstare quo minus quæstio sit possibilis. inquiratur itaque ulterius.

Nos hoc problema construximus imò et data qualibet trianguli areâ infinita triangula eiusdem aræ exhibemus v. g. [verbi gratia] data areâ 6. trianguli 3. 4. 5. en aliud triangulum eiusdem areæ 7/10 120/7 1201/70. aut si placet eadem denominatio 49/70 1200/70 1201/70.

Perpetua et constans methodus hæc est. Exponatur quodlibet triangulum cuius hypotenusa Z. basis B. perpendiculum D. ab eo sic formatur aliud triangulum dissimile eiusdem aræ, nempe formetur abs Z. quadrato et B in D. bis, et planoplana lateribus similia applicentur Z in B. quadratum bis — Z in D. quadratum bis hoc novum triangulŭ habebit aream æqualem aræ præcedentis, ad hoc secundo eâdem methodo formetur tertium, à tertio quartum, à quarto quintum et fient triangula in infinitum dissimilia eiusdem areæ et ne dubites plura tribus dari posse inventis tribus Diophanti 40. 42. 58. 24. 70. 74. et 15. 112. 113. quartum adiungimus dissimile eiusdem tamen areæ. 1412881/1189 hypote.[nusa] 1412880/1189 basis. 1681/1189 perpendic.[ulum]

Et omnibus in eumdem denominatorem ductis fient 4 triangula in integris æqualis areæ quæ sequuntur.

Primum. 47560. 49938. 68962.

Secundum. 28536. 83230. 87986.

Tertium. 17835. 133168. 334357.

Quartum. 1681. 1412880. 1412881

Eâdemque methodo invenientur triangula eiusdem arete in infinitum et quastio sequens ultra Diophanteos limites progredietur.

En etiam alia methodo[25] triangulum cuius aræ facit sextuplum quadrati sicut 3. 4. 5.

Nempe 2896804. 7216803. 7776485.


Перевод:

Но можно ли найти четыре или даже большее число, растущее до бесконечности, треугольников равной площади? Ничто как будто не препятствует тому, чтобы эта задача была возможной; поэтому ее надо глубже исследовать.

Мы разрешили задачу, более того, если дана площадь произвольного треугольника, мы построим бесконечно много других, имеющих ту же площадь: пусть, например, дана площадь 6 треугольника 3, 4, 5, то другим треугольником той же площади будет

7/10, 120/7, 1201/70,

или, если желательно иметь один и тот же знаменатель,

49/70, 1200/70, 1201/70.

Общий и всегда применимый метод таков. Пусть дан произвольный треугольник с гипотенузой Z, основанием B и высотой D. Из него можно вывести другой треугольник, не подобный ему, но одной с ним площади; образуем его из квадрата Z и удвоенного В на D и плоскоплоскостные стороны разделим на удвоенное Z на В квадрат — удвоенное Z на D квадрат[26]. Такой новый треугольник будет иметь площадь, равную площади предыдущего.

Отправляясь от этого второго, таким же методом образуем третий, из третьего четвертый, из четвертого пятый и получим бесконечно много неподобных треугольников одинаковой площади.

Чтобы не было сомнения в возможности построить более трех треугольников, к найденным Диофантом

40, 42, 58; 24, 70, 74; 15, 112, 113

прибавим четвертый, не подобный им и имеющий ту же площадь:

гипотенуза 1412881/1189, основание 1412880/1189, высота 1681/1189.

Если привести эти числа к одному знаменателю, то получим четыре треугольника в целых числах, которые отвечают одной и той же площади:

Первый 47560, 49938, 68962,

Второй 28536, 83230, 87986,

Третий 17835, 133168, 134357,

Четвертый 1681, 1412880, 1412881.

Можно найти тем же методом бесконечно много треугольников одинаковой площади и тем самым распространить задачу Диофанта за пределы, которые он наметил.

Вот еще треугольник, полученный другим методом, площадь которого составляет ушестеренный квадрат, как и у 3, 4, 5, а именно:

2896804, 7216803, 7776485.

OBSERVATIO D. P. F

XXIV (p. 221)

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука