Читаем Observationes Domini Petri de Fermat полностью

8 32 128 512 2048 8192 32768 etc.

Et considerando primò terminum primum secundæ qui est 8. oportet datum numerum non esse duplum unitatis quia ipsi superponatur unitas, neque superare duplo unitatis multiplicem 8.

Deinde considerando secundum terminum secundæ progressionis qui est 32, sumatur duplum numeri superpositi qui est 4. fit 8. cui si addas omnes in eadem progressione superiori proxime antecedentes (in hoc exemplo invenietur sola unitas) fit 9. sumptis igitur duobus numeris 32 et 9. oportet datum numerum neque esse 9 neque superare dicto numero 9. multiplicem 32. consideretur mox tertius progressionis secundæ terminus qui est 128. sumatur duplum numeri superpositi qui est 16. fit 32, cui si addas omnes in eâdem progressione superiori proxime antecedentes qui iam sunt 1. et 4. fit 37. sumptis igitur duobus numeris 128. et 37 oportet datum numerum neque esse 37. neque superare dicto 37. multiplicem 128.

Considerato deinde 4. progressionis secundæ termino fient ex methodo numeri 512 et 149. oportebit itaque datum numerum neque esse 149. neque superare dicto 149. multiplicem 512. et est uniformis et perpetua in infinitum methodus quam neque Diophantus generaliter indicavit, nec Bachetus ipse detexit cuius vel ipsa experientia fallit, ut iam præmonuimus, non solum in numero 37 qui est intra limites experientiæ de quâ fidem facit, sed etiam in numero 149. et alijs.


Перевод:

Условия, наложенные Баше[29], недостаточны: более того, он не провел свои исследования с нужной аккуратностью, так, например, число 37 не исключается этими условиями, но оно не может быть взято.

Вот каковы должны быть условия:

Возьмем две геометрические прогрессии со знаменателем 4 и имеющие первые члены 1 и 8 и напишем их одну под другой следующим образом:

1, 4, 16, 64, 256, 1024, 4096 и т. д.,

8, 32, 128, 512, 2048, 8192, 32768 и т. д.,

и рассматриваем сначала первый член второй прогрессии, т. е. 8; нужно, чтобы данное число не равнялось удвоенной единице, т. е. члену, стоящему над 8, и не превосходило на удвоенную единицу кратное от 8.

Затем рассматриваем второй член второй прогрессии, который равен 32, берем и удваиваем верхнее число, т. е. 4, что даст 8, и прибавляем к нему сумму всех предшествующих членов той же прогрессии (в данном случае эта сумма сводится к единице), что даст 9.

Возьмем число 32 и 9; тогда нужно, чтобы данное число не равнялось 9 и не превосходило 9 на кратное от 32.

Теперь рассмотрим третий член второй прогрессии, т. е. 128, удвоим стоящее выше число, т. е. 16, получим 32; прибавим сумму предшествующих членов той же верхней прогрессии, т. е. 1 и 4, получим 37. Итак, возьмем два числа 128 и 37; нужно, чтобы данное число не равнялось 37 и не превосходило 37 на кратное от 128.

Рассмотрим теперь четвертый член второй прогрессии, тем же методом получим числа 512 и 149. Итак, нужно, чтобы данное число не равнялось 149 и не превосходило 149 на кратное от 512.

Это и есть единообразный метод, который можно продолжать до бесконечности. Он не был указан в общем виде Диофантом и не был известен самому Баше; исследования этого последнего были ошибочны не только для числа 37, как я это уже указал, но и для 149 и других, которые также попадают в границы исследованных им чисел.

OBSERVATIO D. P. F

XXVIII (p. 241)

Ad quæstionem XIX Libri V.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука