Итак, какое отношение это имеет к искусственному интеллекту или эволюции? Гёдель доказал свою теорему за несколько лет до изобретения электронного компьютера, но затем появился Алан Тьюринг и распространил выводы из этой абстрактной теоремы, показав, что, по сути дела, любая формальная процедура доказательства, соответствующая процедуре, описываемой теоремой Гёделя, эквивалентна компьютерной программе. Гёдель нашел способ расставить все возможные системы аксиом
в алфавитном порядке. Фактически, все они могут быть расставлены в Вавилонской библиотеке, а затем Тьюринг показал, что этот набор был подразделом другого раздела в Вавилонской библиотеке: раздела всех возможных компьютеров. Неважно, из чего вы собираете компьютер; важно то, какой алгоритм он воспроизводит; и, поскольку любой алгоритм имеет конечное число шагов, можно разработать единообразный язык для уникального описания каждого алгоритма и размещения всех спецификаций в «алфавитном порядке». Тьюринг разработал именно такую систему, и в ней каждый компьютер – от вашего ноутбука до величайшего из всех параллельных суперкомпьютеров, которые когда-либо будут построены, – имеет уникальное описание, как то, что мы сегодня называем машиной Тьюринга. Каждой из машин Тьюринга можно присвоить уникальный номер – если хотите, ее шифр в Вавилонской библиотеке. Затем теорему Гёделя можно истолковать так, чтобы из нее следовало, что у каждой из тех машин Тьюринга, которые являются внутренне непротиворечивыми алгоритмами доказательства арифметических истин (и, неудивительно, что это – Чрезвычайно обширный, но притом Исчезающе малый подраздел множества всех возможных машин Тьюринга), есть связанное с нею предложение Гёделя – арифметическая истина, которую она не может доказать. Итак, вот что говорит нам Гёдель, которого Тьюринг приковал к миру компьютеров: у каждого компьютера, являющегося внутренне непротиворечивым механизмом доказательства арифметических истин, есть ахиллесова пята, истина, которую он никогда не сможет доказать, даже если будет работать до Судного дня. Ну и что с того?Сам Гёдель считал, что из его теоремы следует, что в этом случае люди (по крайней мере, люди-математики) не могут быть просто машинами, поскольку способны на то, что машины сделать не могут. Точнее, по крайней мере какая-то часть человеческого существа не может быть всего лишь машиной и даже большой системой приборов. Если сердце – насос, легкие – воздухообменники, а мозг – компьютер, то разум математика, полагал Гёдель, не может быть лишь его мозгом, поскольку разум математика способен на то, что недоступно простой вычислительной машине.
На что же такое он способен? Это – проблема определения подвига для большой эмпирической проверки. Соблазнительно думать, что мы уже видели пример: он способен на то, что делали вы, поднимая взгляд на доску в классе, где занимались геометрией – используя нечто вроде «интуиции», или «суждения», или «чистого понимания», он может просто увидеть
, что определенные арифметические положения истинны. Идея состоит в том, что ему не нужно полагаться на презренные алгоритмы, чтобы производить собственное математическое знание, поскольку у него есть талант «схватывать» математические истины, в сравнении с которым алгоритмические процессы совершенно меркнут. Вспомните, что алгоритм – это рецепт, которому может следовать услужливый болван: понимания он не требует. Умные математики, напротив, по-видимому, способны использовать свое понимание, чтобы выйти за пределы доступного математическим болванам. Но хотя складывается впечатление, что так думал сам Гёдель, и, хотя описанное, несомненно, отражает распространенную и популярную интерпретацию выводов из теоремы Гёделя, доказать это гораздо сложнее, чем кажется на первый взгляд. Как, например, отличить случай, когда кто-то (или что-то) «схватывает истину» математического предложения, от случая, когда кто-то (или что-то) просто наобум высказывает удачную догадку? Можно научить попугая кричать «правда» и «ложь», когда перед ним на доске пишут разные знаки; как часто попугай должен угадать правильно, чтобы у нас появились основания думать, что у него все-таки есть нематериальный разум (или, возможно, что перед нами просто математик-человек, переодетый попугаем)?754