Вместо этого математика, какой мы ее знаем, возникает из природы нашего мозга и нашего воплощенного опыта. В результате все романтические представления о ней оказываются ошибочными.[170]
И действительно, вера в существование математического мира, наполненного бесконечными количеством истинных утверждений, которые человеческое сознание может познавать по одному более или менее эффективно в зависимости от воображения и способностей познающего, обладает всеми признаками религиозной фантазии. Речь идет о воображаемом мире, параллельном нашему и содержащем скрытые истины, вечную правду, доступ к которой имеют лишь немногие избранные, наделенные пророческим видением. И лишь те, кто познал смысл этих истин, могут передавать их другим для их просвещения и умудрения.
Математик Грегори Хайтин, сыгравший ключевую роль в применении результатов работ Геделя и Тьюринга в алгоритмической информационной теории (о которой мы подробнее поговорим позже), в одном из интервью заявил о своей вере в существование платоновского мира: «Мне нравится представлять, что я не просто растратил свою жизнь ни на что и не придумал свои результаты, но выразил через них какую-то фундаментальную внешнюю реальность».[171]
Однако в конце интервью он говорит, что после многих лет, потраченных на исследования в области теории сложности, он вынужден признать существование экспериментальной (изобретенной) стороны математики, пусть лично ему с его философских позиций ближе другой подход – средний путь между двумя радикальными позициями.Другие ученые, например светило британской математики сэр Майкл Атья, соглашаются, что вечная истина как «фундаментальная основа, ждущая открытия» может существовать, но личность исследователя персонализирует ее, оставляя на ней свой уникальный отпечаток и освещая ее собственным светом.[172]
Это смелая попытка объяснения, но, если вдуматься, она также не является «средним путем», ведь Атья признает существование мистического математического измерения.[173]Лично я считаю подобные предположения необоснованными, и Эйнштейн со мной согласен. В своем эссе «Замечания о теории познания Бертрана Рассела» он утверждает: «Так, например, натуральный ряд чисел, очевидно, является изобретением человеческого ума, создавшего орудие, позволяющее упростить упорядочение некоторых ощущений».[174]
Рассуждения о платоновском пространстве вечных математических истин могут вдохновлять и направлять математиков, но имеют такие же материальные основания, как размышления христианина о рае: «Он существует, если я в него верю, и моя уверенность – это все, что мне нужно для жизни». Нет никаких доказательств того, что трансцендентные истины существуют вне человеческого восприятия. Почему же просто не сказать, что человеческое сознание обладает потрясающей способностью создавать абстрактные концепции и манипулировать ими с помощью логических рассуждений и познания? Зачем приплетать к этому какую-то нематериальную реальность?Астрофизик Марио Ливио в своей книге «Был ли Бог математиком?» рассказывает об истории противопоставления двух взглядов на математику – как на исследование и как на изобретение, ссылаясь при этом на рассуждения и работы величайших представителей науки всех времен. Он делает вывод, что простого ответа на этот вопрос не существует: «Как правило, концепции являются изобретениями. Люди изобрели концепцию простых чисел, но вот теоремы о простых числах уже были открытиями».[175]
Проблема с этими рассуждениями состоит в том, что мы не можем быть уверены, является ли что-то открытием, не имея на руках своего рода карты загадочной математической страны. В конце своей книги Ливио переходит на сторону когнитивистов и подчеркивает важнейшую роль человеческой нейрофизиологии в объяснении эффективности и единообразия математики.Разумное сознание, способное к счету и оперирующее понятием бесконечности, способно разработать основы арифметики и даже теории множеств. Известно, что некоторые животные, например шимпанзе и вороны, умеют считать, но лишь до определенного уровня. Затем они останавливаются, так как не в состоянии понять существование больших чисел и осознать, что подсчет может никогда не закончиться. Как пишут Лакофф и Нуньес, только сложное сознание может представить себе бесконечность, то есть осуществить переход от бесконечности как потенциала (возможности считать или проводить линию без остановки) к бесконечности как факту и отдельному понятию. Мы не можем досчитать до бесконечности, но ее образ имеется у нас в головах.