Лауреат Нобелевской премии по физике Юджин Вигнер в своей статье «Непостижимая эффективность математики в естественных науках» обращает внимание на использование математики в физике и описывает ее как удивительный дар: «Невероятная эффективность математики в естественных науках есть нечто граничащее с мистикой, ибо никакого рационального объяснения этому факту нет». Будучи первым ученым, применившим математическую теорию групп к квантовой механике, Вигнер пишет о своем удивлении тем, как много физических результатов было получено с использованием математических концепций, не предназначенных для этих целей – да и для каких бы то ни было целей в принципе: «Чудесная загадка соответствия математического языка законам физики является поразительным даром, который мы не в состоянии понять и которого мы, возможно, недостойны».[176]
Между работой математиков и теоретических физиков действительно существует прекрасная гармония, ведь математика постоянно и с неизменным успехом применяется для разрешения физических проблем. Однако удивление Вигнера, которое разделяют многие физики, не имеет под собой оснований. Во-первых, как писал Г. Х. Харди, «геометр предлагает физику целый набор карт на выбор. Возможно, что одна карта будет лучше соответствовать фактам, чем другие. В этом случае геометрия, порождающая лучшую карту, окажется геометрией, наиболее важной для прикладной математики».[177]
Многие математические идеи не имеют ничего общего с физической реальностью, физики лишь выбирают те, которые кажутся им наиболее удобными, для достижения своих целей. Как прекрасно знает любой физик-теоретик, абсолютное большинство математических моделей, которые мы разрабатываем, не имеют никакого отношения к реальному миру. Что бы ни говорила нам интуиция, большинство уравнений, которые мы решаем, остаются просто уравнениями. Познавать Природу куда сложнее, чем делать расчеты для моделей.Во-вторых, даже самая абстрактная математика отталкивается от воспринимаемой реальности. Числа, множества, геометрия – все эти концепции существуют у нас в мозгу и используются для описания мира. Мы считаем, мы объединяем предметы в множества (вон там столько-то львов, а вон там – столько-то зебр), мы распознаем схемы. Как пишут Лакофф и Нуньес, чтобы понять, откуда берется математика, мы должны прояснить процесс ее «воплощения», то есть узнать, как именно наше когнитивное строение приводит к формированию тех или иных мыслительных процессов. В-третьих, заявление «истина есть красота, и красота есть истина», то есть утверждение о том, что в математике присутствует эстетическая красота, отраженная в Природе, является заблуждением. Разумеется, в Природе существует множество прекрасных симметрий и повторяющихся узоров, таких как спирали галактик и ураганов или шарообразная форма планет и мыльных пузырей. Еще больше абстрактных симметричных проявлений можно найти во взаимодействиях фундаментальных частиц материи друг с другом. Но большая часть этих симметричных явлений объясняется приближением, а многие предметы и вовсе асимметричны. В своей книге
Дополнительную сложность в обсуждение этого вопроса вносит тот факт, что во многих случаях введение математической симметрии или единообразия в физику приводило к потрясающим достижениям. Возьмем, к примеру, релятивистскую версию квантовой механики Дирака, благодаря которой были открыты античастицы. Пытаясь создать формулировку квантовой механики, согласующуюся с эйнштейновской теорией относительности и спином электрона, Дирак получил не одно, а сразу два решения своего уравнения. Одно из них описывало электрон, а второе – аналогичную частицу, но с противоположным зарядом (существовало и еще несколько мелких различий, но они в данном случае неважны). Зная, что положительным зарядом среди частиц обладает протон и что его масса существенно отличается от массы электрона, Дирак вскоре понял, что имеет дело с новой частицей – античастицей. В 1932 году Карл Андерсон обнаружил «антиэлектрон» экспериментальным путем и назвал его позитроном. Математический союз между квантовой механикой и специальной теорией относительности предсказал существование целого нового класса частиц антиматерии. Таким образом, у каждой частицы материи появился антиматериальный брат-близнец.