Читаем Откуда мы знаем, что такое точка? полностью

В частности, в силу введенного в формальной логике определения, условились считать истинными не только такие высказывания как «Если данное число делится на 9, то оно делится на 3», но и высказывания вида: «Если дважды два – четыре, то Волга впадает в Каспийское море», а также высказывания, составленные из таких пар, в которых первое из двух утверждений (посылка) ложно: «Если дважды два – пять, то Волга впадает в Каспийское море»; «Если дважды два – пять, то Волга впадает в Аральское море».

Может показаться, что импликация (обычно обозначаемая стрелкой →) представляет собой безобидное непосредственное обобщение союза «если…, то…». Но тогда логические законы, справедливые для операции →, казалось бы, не должны приводить к противоречию, если пользоваться ими в естественной речи.

Одним из таких законов является закон контрапозиции, утверждающий, что при любых истинностных значениях высказываний А и В высказывания А → В и (не В) → (не А) равносильны (т.е. одновременно истинны или одновременно ложны).

Рассмотрим теперь общеизвестную истинную импликацию

«Если ветер дует, то деревья качаются». (1)

Тогда высказыванием, противоположным к обратному (по отношению к (1)), очевидно, будет

«Если деревья не качаются, то ветер не дует». (1)

В полном соответствии с законом контрапозиции это высказывание также оказывается истинным.

Посмотрим теперь, что будет, если мы переформулируем оба утверждения (1) и (1) в прошедшем времени. Тогда наши утверждения примут соответственно вид

«Если ветер дул, то деревья качались»; (2)

«Если деревья не качались, то ветер не дул». (2)

Вновь оба утверждения оказались истинными (и закон контрапозиции по-прежнему не нарушен).

Сформулируем теперь наши высказывания в будущем времени. Казалось бы, ничто не предвещает «краха» закона контрапозиции. Однако, мы получаем следующий довольно странный результат:

«Если ветер будет дуть, то деревья будут качаться»; (3)

«Если деревья не будут качаться, то ветер не будет дуть». (3)

Неужели закон контрапозиции неверен?

Объяснение кажущегося парадокса состоит в следующем.

В естественном языке мирно сосуществуют два различных по смыслу союза «если…, то…». Первый из них, который мы назовем логическим следованием, фактически утверждает:

«Если А, то одновременно с А имеет место и В».

Второй из упомянутых союзов, который мы назовем причинным следованием, в развернутом виде утверждает нечто иное:

«Если с некоторого момента А, то вскоре после этого имеет место и В».

Операция →, с которой мы имели дело всюду выше, представляла собой обобщение именно логического следования. Закон контрапозиции, справедливость которого установлена в формальной логике для операции →, вне всякого сомнения верен и для этого первого смыслового значения союза «если…, то…». При этом использование будущего времени при формулировке высказываний А и В никак не влияет на справедливость закона контрапозиции для операции логического следования. Например, одновременно истинны высказывания:

«Если число, которое ты задумаешь, будет делиться на 9, то оно будет делиться и на 3» и «Если число, которое ты задумаешь, не будет делиться на 3, то оно не будет делиться и на 9».

Отличие этой пары высказываний от (3), (3) очевидно!

Мы предоставляем читателю возможность самостоятельно разобраться в том, почему к парам высказываний (1), (1) и (2), (2) закон контрапозиции оказался применим, а также в том, как следует видоизменить этот закон, чтобы он стал применим и к высказываниям в будущем времени, содержащим операцию причинного следования.

Эффект, аналогичный кажущемуся нарушению закона контрапозиции, возникает и для логического союза «тогда и только тогда, когда…». Например, высказывание

«На улице станет светло тогда и только тогда, когда взойдет солнце», (4)

очевидно, истинно и имеет, на первый взгляд, структуру А↔В. Однако, попытка поменять А и В местами немедленно приводит к абсурду:

«Солнце взойдет тогда и только тогда, когда на улице станет светло». (4)

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное