Читаем Озадачник полностью

Для определенности: пусть один билет выигрывает $1, второй $2, третий $3. Мы их так и обозначим: 1, 2, 3. Последовательность вытягивания билетов может быть такой (все возможные варианты, совершенно равновероятные): 123 (А), 132 (Б), 213 (В), 231 (Г), 312 (Д), 321 (Е). Если мы будем действовать по выбранному плану, то в половине случаев (Б, В, Г) мы обеспечим себе максимальный выигрыш ($3), в двух случаях (А и Д) средний выигрыш ($2) и только в одном (Е) – минимальный ($1). 50 % на получение максимального приза – это гораздо лучше, чем средние 33 % (1/3), которые были у нас изначально. Любопытно, что в случае N билетов, где при случайном выборе билета вероятность получения максимального приза равна 1/N (если N = 100, то это всего-то 1 %), схожим образом можно обеспечить себе большую вероятность выбора билета с максимальным выигрышем: пропускаем N/e билетов (e ≈ 2,718281828… – основание натурального логарифма, см. также задачу № 85), а после выбираем билет с первой максимальной (большей всех предыдущих) суммой приза. В этом случае вероятность угадать составляет 1/e ≈ 0,37, это больше, чем один к двум, очень хорошие шансы! Подробнее – в книге Ф. Мостеллера «Пятьдесят занимательных вероятностных задач с решениями».

<p>82. Пельменный чемпион</p>

В Омске проводят конкурс по поеданию пельменей – кто осилит больше. К финалу допускаются только те, кто способен съесть не менее сотни. В финал вышли четверо: Александр, Борис, Владимир и Геннадий. Известно, что победил Александр, Борис с Владимиром на пару съели 599 пельменей, а всего в финале их уничтожили ровно 1000 штук.

Сколько же съел победитель?

Варианты ответов

1. 300 пельменей.

2. 301 пельмень.

3. 302 пельменя.

Правильный ответ:2

Для краткости обозначим съеденное каждым «спортсменом» по первым буквам их имен: А, Б, В и Г. Мы знаем, что А + Б + В + Г = 1000, Б + В = 599 (и, значит, А + Г = 401) и что А, Б, В, Г ≥ 100. Отсюда следует, что А ≤ 301, но тогда Александр может быть победителем только при условии, что Борис съел 300, а Владимир 299 (или наоборот, что нам совершенно неважно – мы не интересуемся занявшими второе и третье места; важно, что если кто-то из них слопал 301 или больше, то Александр уже никак не может победить), Геннадий съел ровно 100, а Александр 301 пельмень. Это и есть ответ.

<p>83. Землекопы</p>

Три землекопа могут вскопать 1 га за 2 ч. За какое время им удастся вскопать 3 га, если прикомандировать к ним еще двух столь же работоспособных землекопов?

Варианты ответов

1. За те же 2 ч.

2. За 2 ч 40 м.

3. За 3 ч 36 м.

Правильный ответ:3

Если действовать по всем правилам, то сначала нужно посчитать производительность одного землекопа – это 1/3 га за 2 ч, т. е. 1/6 га/ч. Теперь, чтобы найти время обработки 3 га пятью землекопами, нужно взять 3 га, разделить на производительность одного землекопа и на число землекопов, получим 18/5 = 3,6 ч, или 3 ч 36 м. Но можно и грубо прикинуть, без детальных расчетов: объем работ вырос втрое, а производительность бригады в 5/3 ≈ 1,7 раза. Вспоминая, что 1,7 – это примерное значение √3, сразу получаем, что время работы должно увеличиться где-то в те же 1,7 раза. Из предложенных вариантов ответа только третий близок к этому значению, его и берем.

<p>84. Считаем в уме I</p>

Чему равняется произведение 748 × 1503?

Варианты ответов

1. 1 096 124.

2. 1 124 244.

3. 1 244 124.

Правильный ответ:2

Казалось бы, что может быть интересного в перемножении двух чисел? Берешь калькулятор и считаешь. Но с калькулятором и правда ничего интересного – иное дело попробовать посчитать в уме. Со всеми такими задачами главное – считать не в лоб, а попытаться увидеть, как можно облегчить себе работу. В конкретном нашем примере запишем 748 как (1500 – 4)/2, а 1503 как (1500 + 4) – 1, тогда получим: 748 × 1503 = (1500 – 4) (1500 + 4)/2 – 748. Вспоминая, что (a – b) × (a + b) = a² – b², получаем: 748 × 1503 = 1500²/2 – 4²/2 – 748 = 2 250 000/2 – 756 = 1 125 000–756 = 1 124 244. Возможность посчитать в уме (хотя бы приближенно, не всегда нужна совершенная точность) – очень важный навык. Знаменитый физик Ричард Фейнман посвятил этому целую главу в своей книге «Вы, конечно, шутите, мистер Фейнман!»[8], там он вычисляет в уме не только произведения, но и логарифмы, и кубические корни.

<p>85. Считаем в уме II</p>

С точностью до третьей значащей цифры посчитайте в уме корень 100-й степени из числа e (e = 2,718281828… – основание натурального логарифма). Это будет:

Варианты ответов

1. 1,01.

2. 1,04.

3. 1,11.

Правильный ответ:1
Перейти на страницу:

Похожие книги