При обычных условиях р53
«живет» в клетке тихой и незаметной жизнью, в неактивированном состоянии, в крайне незначительной концентрации, под жестким присмотром убиквитин-лигазы Mdm2, непрерывно помечающей его метками «на уничтожение». Все меняется, когда приходит Стресс, который можно расценивать как стремительное падение «понимания» клеткой динамики своей окружающей среды, рост неопределенности контекста ее существования. Непосредственными действующими факторами могут быть тепловой шок, генетические и метаболические сбои, гипоксия, повреждения ДНК. Митохондрии воспринимают внешние стрессовые воздействия и реагируют на них быстрой перестройкой своего окислительного метаболизма, что ведет к массивному высвобождению АФК и АФА, выводящих р53 из-под опеки Mdm2. Активированный р53 перемещается в матрикс и внешнюю мембрану митохондрий, где в зависимости от статуса энергетического метаболизма запускает каскад или апоптоза, или клеточного «спасения». В последнем случае выработка АФК усиливается и поощряется дальнейшее накопление р53, ведущее к связыванию р53 с рядом ключевых генов клеточного деления и репарации ДНК. В целом р53 – один из наиболее эффективных белков-супрессоров рака. Даже незначительные сбои в этой отлаженной системе ставят клетку на грань опухолевого перерождения.Разнообразные зародышевые мутации в гене белка р53
(но не все) ведут к развитию синдрома Ли-Фраумени – редкому доминантно-наследуемому заболеванию, для которого характерна очень ранняя (часто в детском возрасте) манифестация множественных специфических злокачественных опухолей. Разнообразные соматические мутации этого белка являются одними из самых частых обнаружений при различных типах и локализациях опухолевых перерождений, в том числе в составе типизированных модулей мутаций, предложенных Евгением Куниным (см. выше). Однако большинство нарушений этой системы не обусловлены напрямую дефектами белка р53, а часто находятся в смежных системах митохондрий, хроматина и, что наиболее важно для концепции ТПТО, межклеточных коммуникаций и взаимодействий. Косвенным подтверждением ее справедливости, хотя бы отчасти, оказывается совокупность метаболических феноменов, характерных для пораженной злокачественной опухолью ткани и объединяемых в рамках «эффекта Варбурга» и «обратного эффекта Варбурга». Оба эффекта часто связаны друг с другом и самым тесным образом заплетены вокруг митохондрий.В середине 20-х годов ХХ века известнейший немецкий биохимик, будущий нобелевский лауреат по медицине Отто Варбург показал, что энергетический метаболизм в раковых клетках существенно изменен: несмотря на свой прогрессирующий рост, они добывают энергию не высокоэффективным путем окислительного фосфорилирования в митохондриях, а преимущественно малопродуктивным, но надежным путем аэробного расщепления глюкозы. В результате такого анаэробного гликолиза происходит накопление преимущественно молочной кислоты, что ведет к вторичным метаболическим эффектам как в самом конгломерате раковых клеток, так и прилегающем микроокружении. Как было показано позднее, это явление, названное «эффектом Варбурга», наблюдается во многих, но не во всех типах злокачественных опухолей. Основным объяснением эффекта стала дисфункция митохондрий. Долгое время он считался сопутствующим феноменом ракового перерождения на фоне доминирующей с 60-х годов ХХ века теории соматических мутаций.