• Потеря характеристик, которые делают ФТЕ целостной системой, является обязательным условием формирования начального предракового состояния.
• «Рак» представляет собой появление новой «системы», возникающей из компонентов ФТЕ, утратившей нормальное устройство самоорганизации и функциональность, что проявляется изменениями в ее морфологии и физиологии.
• Развитие рака – это детерминированное развитие последовательностей быстро адаптирующихся эмерджентных систем, каждая из которых проявляется определенными морфологическими, физиологическими и поведенческими паттернами, динамика которых может быть изучена с применением подхода фазового пространства системы.
• Рамочная концепция эмерджентности канцерогенеза предоставляет общую единую платформу для упрощения и объединения изучений рака во всех областях фундаментальных, клинических и трансляционных[21] исследований. Фокус этих исследований должен быть направлен на тот уровень биологической организации, на котором ставится диагноз ракового процесса – ФТЕ.
Библиографический список
1. Гавриш О. Г. (2003). Гурвич А. Г. и подлинная история биологического поля. Химия и жизнь. № 5. С. 32–37.
2. Тейлор Д. (2016). Здоровье по Дарвину. Почему мы болеем и как это связано с эволюцией. – М., Альпина Паблишер.
3. Таунсенд Дж. (2018). Эволюционное древо рака. ВМН № 7, с. 44–50.
4. Гейтенби Р., Дегрегори Дж.(2019). Борьба с раком по Дарвину. ВМН № 10, с. 5–11.
5. Актипис А. (2021). Злостные читеры. ВМН № 3, с. 22–26.
6. Iranzo J., Martincoreno I., Koonin E. V. (2018). Cancer-mutation network and the number and specificity of driver mutations. Proc Natl Acad Sci U S A.; 115 (26): E6010–E6019.
7. Soto A. M., Sonnenschein C. (1999). The Society of cells – Cancer and control of cell proliferation. – Bios Scientific-Springer Verlag, Oxford-NY.
8. Sonnenschein C., Soto A.M. (2008). Theories of carcinogenesis: an emerging perspective. Semin Cancer Biol.; 18 (5): 372–7.
9. Soto A. M., Sonnenschein C. (2011). The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory. Bioessays 33: 332–340.
10. Driesch H. (1908). The Science and Philosophy of the Organism: The Gifford Lectures delivered before the University of Aberdeen in the Year 1907 and 1908 (2 vols.). London: Adam and Charles Black. [1] 2nd ed. London: A. & C. Black, 1929.
11. Mintz B., Illmensee K. (1975). Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad SciUSA. 72 (9): 3585–9.
12. Van Wijk R., Van Wijk E. P. A., Pang J., Yang M., Yan Y., Han J. (2020). Integrating Ultra-Weak Photon Emission Analysis in Mitochondrial Research. Front. Physiol. 11: 717.
13. Frankenburger W. (1933). Neuere Ansichten über das Wesen photochemischer Prozesse und ihre Bedeutung zu biologischen Vorgangen. Strahlentherapie. Bd. 47, S. 2.
14. Mattei T. A. (2015). Alternating electric fields and carcinogenesis: a new paradigm to avoid missing the elephant in the room. World Neurosurgery, 83 (5): 718–22.
15. Rosenfeld S. (2013a). Global consensus Theorem and self-Organized criticality: Unifying principles for Understanding self-Organization, swarm Intelligence and Mechanisms of carcinogenesis. Gene Regulation and Systems Biology, 2013: 723–39.
16. Rosenfeld S. (2013b). Are the somatic mutation and tissue organization field theories of Carcinogenesis Incompatible? Cancer Informatics, 12: 221–229.
17. Grossberg S. (1978) Competition, Decision and Consensus. J Math Anal Appl 662: 470-493.
18. Hickson J., Diane Y. S., Berger J., Alverdy J., O’Keefe J., Bassler B, Rinker-Schaeffer C. (2009). Soci et al. interactionsin ovarian cancer metastasis: a quorum-sensing hypothesis. Clin Exp Metastasis, 26: 67–76.
19. Agur Z., Kogan Y., Levi L., Harrison H., Lamb R., Kirnasovsky O. U., Clark R. B. (2010). Disruption of a Quorum Sensing mechanism triggers tumorigenesis: a simple discrete model corroborated byexperiments in mammary cancer stem cells. Biol Direct, 5: 20.
20. Milstein J.N., Meiners J.-C. (2011). On the role of DNA biomechanics in the regulation of gene expression. J. R. Soc. Interface 8, 1673–1681.
21. Toufektchan E., Toledo F. (2018). The Guardian of the Genome Revisited: p53 Downregulates Genes Required for Telomere Maintenance, DNA Repair, and Centromere Structure. Cancers. 10 (5): 135.
22. Nithipongvanitch R., Ittarat W., Velez J. M., Zhao R., St Clair D. K., Oberley T. D. (2007). Evidence for p53 as guardian of the cardiomyocyte mitochondrial genome following acute adriamycin treatment. J. Histochem. Cytochem. 55 (6): 629–639.
23. Vincent A. S., Phan T. T., Mukhopadhyay A., Lim H. Y., Halliwell B., Wong K. P. (2008). Human skin keloid fibroblasts display bioenergetics of cancer cells. J. Invest. Dermatol. 128 702–709.