Поэтому пока приходится довольствоваться скорее эмпирическими теориями самоорганизованной критичности, позволяющих тем не менее достаточно удовлетворительно описывать как физические модели, так и многие природные и даже социальные явления. Всех их, как уже указывалось, объединяет один ряд исключительно важных признаков:
1. Грубость, или устойчивость системы к изменениям параметров;
2. Следование степенному закону распределения событий, с «тяжелыми хвостами» возможных событий чрезвычайно большого масштаба;
3. Масштабная инвариантность или фрактальность, придающая системе способность иерархического самоповторения.
Можно предполагать, что в скором времени аналитический аппарат самоорганизованной критичности будет достаточно разработан, чтобы показать, как есть основания надеяться, глубинную общность названных концепций спонтанной самоорганизации и динамического хаоса, включая информационные и энтропийные аспекты этих теорий. На данный момент мы имеем больше вопросов, чем ответов в отношении ключевых свойств динамической критически самоорганизованной системы, способных сделать систему живой как в переносном, так и прямом смысле: например, что на самом деле в модели СОК является постоянным элементом системы, обладающим памятью макросостояния? В песочной модели, например, песчинки не являются постоянными элементами системы: они непрерывно входят и выходят из нее, обладая, похоже, лишь скоротечной микроинформацией (обусловливая тем не менее возможность постоянного обновления тезауруса системы). Возможно, элементами системы являются некие динамические кластеры, не имеющие явного «физического» воплощения, но возле контуров которых, как по руслам, и проходит обвал? Последнее предположение, хоть и образное, но выглядит вполне логичным: очевидно, что, если в куче есть кластеры, взаимодействия в которых отличаются от средних по системе, разломы и обвалы будут проходить возле них.
Клеточные автоматы как модели жизни
А. В. Подлазов (2002) обнаруживает в многочисленных моделях СОК важную общность: все они строятся на одной и той же схеме, основанной на динамическом взаимодействии двух разнонаправленных процессов. Первый можно обозначить как условно естественный путь развития элементов системы (в модели песка, например, связанный, очевидно, с силами трения и ведущий к увеличению локального наклона кучи), второй – путь селекции или отбраковки (в модели песка – совокупность сил, ведущих к осыпанию).
Как указывалось, математический аппарат систем СОК весьма близок (и, как указывалось выше, достаточно сложен), то есть в теоретическом плане изменение физической модели не имеет принципиальных последствий. Если же взять для дальнейшего рассмотрения более «математические» модели, например на основе клеточных автоматов, то последствия изменений могут оказаться более существенными. В одной из таких сравнительно простых моделей, созданной Д. Дхара и Р. Рамасвами, куча песка представлена двумерной решеткой (в оригинале – гексагональной), со сдвигом слоев на ½ ячейки, так что каждая ячейка одного слоя граничит с двумя ячейками верхнего или нижнего слоя (рис. 13) – условно уровнями кучи.
Рис. 13. Клеточный автомат – симулятор песочной кучи
Числа в ячейках отражают наклон кучи (0 – нет наклона, >0 – есть наклон), но если наклон больше 1 (то есть =2), то куча «осыпается»: две нижние ячейки приобретают по единице, сама ячейка, соответственно, «обнуляется» (как часто бывает, временно). «Куча» цилиндрическая, то есть края решетки замкнуты и песчинка с края на рисунке переходит на противоположный край. Снизу ячеек нет, и единицы – песчинки «вываливаются» из кучи. На решетку справа в случайную ячейку верхнего слоя попадает единица-песчинка (+1). После этого ячейка переходит в возмущенное состояние (решетка справа), начинается цепная реакция осыпаний, завершающаяся стадией релаксации. Ячейки, пережившие осыпание на решетке справа, отмечены серым цветом; получившие единицы-песчинки, но сохранившие устойчивость, – светло-серым.
В клеточном автомате Д. Дхара и Р. Рамасвами размер лавины может быть описан площадью осыпания (количеством осыпавшихся ячеек) или длительностью (количеством вовлеченных слоев). Компьютерное моделирование показывает, что распределение лавин по площади и глубине имеет отчетливо степенной вид, особенно показательный на очень больших решетках, что характеризует данную систему как склонную к катастрофам, то есть нахождению в состоянии самоорганизованной критичности.