Сверху по одной ссыпаются песчинки. При этих условиях постепенно образующийся наклон Z определяет состояние кучи как системы: если локальный
наклон становится больше некоего порога устойчивости, песчинки пересыпаются ниже, где могут остановиться, но могут и продолжить движение, вовлекая в движение новые песчинки. Но пока куча мала, воздействие одной песчинки не может оказать влияние на кучу в целом: она представляет собой пока просто совокупность отдельных песчинок при отсутствии между их значительным количеством существенных связей.Если куча вырастает и средний
наклон достигает некоего значения Zc, то он уже не может расти дальше – среднее количество добавляемого песка соответствует его количеству, падающему через край. Система достигает стационарного состояния: среднее количество песка и средняя крутизна постоянны по времени. И для поддержания такого баланса части системы должны уже быть взаимосвязаны. Время от времени возникает сход лавины – ток песка J, непропорционально увеличивающийся с ростом Z. Физически это можно назвать непрерывным фазовым переходом, в котором наклон Z выполняет роль управляющего параметра, а ток песка становится параметром порядка. Причем как при значениях Z < Zc, так и значениях Z > Zc система обладает устойчивым, некатастрофическим поведением, но принципиально отличающимся: в первом случае она хаотична, во втором – более упорядочена.В отношении открытой динамической системы сложно говорить о точных значениях энтропии, но можно полагать, что в первом случае вклад системы в общий рост энтропии увеличивается, а во втором – уменьшается. При значениях Z
около Zc система приобретает новое свойство критического состояния: система в общем находится в стационарном состоянии, но если до этого любая новая песчинка катилась только по собственной локальной динамике, то теперь она может вызвать лавину любого размера – от совсем маленькой, до «катастрофической», то есть динамика приобретает всеобъемлющий характер, и в этом смысле в этом момент система «самоорганизуется» или переходит в состояние «самоорганизованной критичности». И эту всеобъемлющую динамику невозможно никоим образом предсказать на основании свойств отдельных песчинок. Распределение лавин по объему будет следовать степенной динамике, с заметной вероятностью «катастрофических» событий, но останется абсолютно непериодическим и непредвиденным. В целом это поведение можно описать как прерывистое равновесие, когда спокойные периоды роста сменяются лавинными событиями. В определенном смысле эти фазы можно сопоставить с чередованием динамических и хаотических стадий в модели Д. С. Чернавского.Однако, в отличие от этой модели, куча песка в модели самоорганизованной критичности является открытой динамической системой – в нее входят и из нее выходят песчинки, через систему идет поток энергии: при падении и скатывании песчинок их потенциальная энергия преобразуется в кинетическую, которая при остановке песчинок рассеивается, переходит в тепло, частично поглощаемое кучей, частично рассеивающееся, происходит диссипация энергии. Этот поток энергии способен достаточно долго поддерживать критическое состояние системы.
Данная модель обладает устойчивостью в отношении возможных модернизаций, изменений параметров системы, то есть грубостью. И это является важнейшей особенностью концепции самоорганизованной критичности, принципиально отличающей ее от большинства других модельных концепций. Изменение какого-то из параметров, например замена «сухого» песка на «влажный», то есть изменение силы сцепления между частицами приведет к некоторым изменениям в масштабе времени и масштабе лавин, но в итоге все также вернет систему в критическое состояние. Расстановка в куче искусственных заслонов также изменит внешний вид кучи, временно – ее динамику, но в итоге куча неизбежно вернется в критичность.
Несмотря на сравнительную простоту математического описания этой физической модели (например, в понятиях клеточных автоматов (Dhar D. and Ramaswamy R., 1989), как и большинства других моделей самоорганизованной критичности, создание математической аналитической теории, способной предсказать поведение системы и дать достаточно глубокое понимание сути происходящего, как, например, в теории динамического хаоса или фазовых переходов в динамических системах, оказывается крайне сложным.